This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain of a composition. Theorem 21 of Suppes p. 63. (Contributed by NM, 19-Mar-1998) (Proof shortened by Andrew Salmon, 27-Aug-2011) Avoid ax-10 and ax-12 . (Revised by TM, 31-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmcoss | |- dom ( A o. B ) C_ dom B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exsimpl | |- ( E. z ( x B z /\ z A y ) -> E. z x B z ) |
|
| 2 | vex | |- x e. _V |
|
| 3 | vex | |- y e. _V |
|
| 4 | 2 3 | opelco | |- ( <. x , y >. e. ( A o. B ) <-> E. z ( x B z /\ z A y ) ) |
| 5 | breq2 | |- ( y = z -> ( x B y <-> x B z ) ) |
|
| 6 | 5 | cbvexvw | |- ( E. y x B y <-> E. z x B z ) |
| 7 | 1 4 6 | 3imtr4i | |- ( <. x , y >. e. ( A o. B ) -> E. y x B y ) |
| 8 | 7 | eximi | |- ( E. y <. x , y >. e. ( A o. B ) -> E. y E. y x B y ) |
| 9 | 5 | exexw | |- ( E. y x B y <-> E. y E. y x B y ) |
| 10 | 8 9 | sylibr | |- ( E. y <. x , y >. e. ( A o. B ) -> E. y x B y ) |
| 11 | 2 | eldm2 | |- ( x e. dom ( A o. B ) <-> E. y <. x , y >. e. ( A o. B ) ) |
| 12 | 2 | eldm | |- ( x e. dom B <-> E. y x B y ) |
| 13 | 10 11 12 | 3imtr4i | |- ( x e. dom ( A o. B ) -> x e. dom B ) |
| 14 | 13 | ssriv | |- dom ( A o. B ) C_ dom B |