This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin1a2 . Split a III-infinite set in two pieces. (Contributed by Stefan O'Rear, 7-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fin1a2lem.b | |- E = ( x e. _om |-> ( 2o .o x ) ) |
|
| fin1a2lem.aa | |- S = ( x e. On |-> suc x ) |
||
| Assertion | fin1a2lem7 | |- ( ( A e. V /\ A. y e. ~P A ( y e. Fin3 \/ ( A \ y ) e. Fin3 ) ) -> A e. Fin3 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin1a2lem.b | |- E = ( x e. _om |-> ( 2o .o x ) ) |
|
| 2 | fin1a2lem.aa | |- S = ( x e. On |-> suc x ) |
|
| 3 | peano1 | |- (/) e. _om |
|
| 4 | ne0i | |- ( (/) e. _om -> _om =/= (/) ) |
|
| 5 | brwdomn0 | |- ( _om =/= (/) -> ( _om ~<_* A <-> E. f f : A -onto-> _om ) ) |
|
| 6 | 3 4 5 | mp2b | |- ( _om ~<_* A <-> E. f f : A -onto-> _om ) |
| 7 | vex | |- f e. _V |
|
| 8 | fof | |- ( f : A -onto-> _om -> f : A --> _om ) |
|
| 9 | dmfex | |- ( ( f e. _V /\ f : A --> _om ) -> A e. _V ) |
|
| 10 | 7 8 9 | sylancr | |- ( f : A -onto-> _om -> A e. _V ) |
| 11 | cnvimass | |- ( `' f " ran E ) C_ dom f |
|
| 12 | 11 8 | fssdm | |- ( f : A -onto-> _om -> ( `' f " ran E ) C_ A ) |
| 13 | 10 12 | sselpwd | |- ( f : A -onto-> _om -> ( `' f " ran E ) e. ~P A ) |
| 14 | 1 | fin1a2lem4 | |- E : _om -1-1-> _om |
| 15 | f1cnv | |- ( E : _om -1-1-> _om -> `' E : ran E -1-1-onto-> _om ) |
|
| 16 | f1ofo | |- ( `' E : ran E -1-1-onto-> _om -> `' E : ran E -onto-> _om ) |
|
| 17 | 14 15 16 | mp2b | |- `' E : ran E -onto-> _om |
| 18 | fofun | |- ( `' E : ran E -onto-> _om -> Fun `' E ) |
|
| 19 | 17 18 | ax-mp | |- Fun `' E |
| 20 | 7 | resex | |- ( f |` ( `' f " ran E ) ) e. _V |
| 21 | cofunexg | |- ( ( Fun `' E /\ ( f |` ( `' f " ran E ) ) e. _V ) -> ( `' E o. ( f |` ( `' f " ran E ) ) ) e. _V ) |
|
| 22 | 19 20 21 | mp2an | |- ( `' E o. ( f |` ( `' f " ran E ) ) ) e. _V |
| 23 | fofun | |- ( f : A -onto-> _om -> Fun f ) |
|
| 24 | fores | |- ( ( Fun f /\ ( `' f " ran E ) C_ dom f ) -> ( f |` ( `' f " ran E ) ) : ( `' f " ran E ) -onto-> ( f " ( `' f " ran E ) ) ) |
|
| 25 | 23 11 24 | sylancl | |- ( f : A -onto-> _om -> ( f |` ( `' f " ran E ) ) : ( `' f " ran E ) -onto-> ( f " ( `' f " ran E ) ) ) |
| 26 | f1f | |- ( E : _om -1-1-> _om -> E : _om --> _om ) |
|
| 27 | frn | |- ( E : _om --> _om -> ran E C_ _om ) |
|
| 28 | 14 26 27 | mp2b | |- ran E C_ _om |
| 29 | foimacnv | |- ( ( f : A -onto-> _om /\ ran E C_ _om ) -> ( f " ( `' f " ran E ) ) = ran E ) |
|
| 30 | 28 29 | mpan2 | |- ( f : A -onto-> _om -> ( f " ( `' f " ran E ) ) = ran E ) |
| 31 | foeq3 | |- ( ( f " ( `' f " ran E ) ) = ran E -> ( ( f |` ( `' f " ran E ) ) : ( `' f " ran E ) -onto-> ( f " ( `' f " ran E ) ) <-> ( f |` ( `' f " ran E ) ) : ( `' f " ran E ) -onto-> ran E ) ) |
|
| 32 | 30 31 | syl | |- ( f : A -onto-> _om -> ( ( f |` ( `' f " ran E ) ) : ( `' f " ran E ) -onto-> ( f " ( `' f " ran E ) ) <-> ( f |` ( `' f " ran E ) ) : ( `' f " ran E ) -onto-> ran E ) ) |
| 33 | 25 32 | mpbid | |- ( f : A -onto-> _om -> ( f |` ( `' f " ran E ) ) : ( `' f " ran E ) -onto-> ran E ) |
| 34 | foco | |- ( ( `' E : ran E -onto-> _om /\ ( f |` ( `' f " ran E ) ) : ( `' f " ran E ) -onto-> ran E ) -> ( `' E o. ( f |` ( `' f " ran E ) ) ) : ( `' f " ran E ) -onto-> _om ) |
|
| 35 | 17 33 34 | sylancr | |- ( f : A -onto-> _om -> ( `' E o. ( f |` ( `' f " ran E ) ) ) : ( `' f " ran E ) -onto-> _om ) |
| 36 | fowdom | |- ( ( ( `' E o. ( f |` ( `' f " ran E ) ) ) e. _V /\ ( `' E o. ( f |` ( `' f " ran E ) ) ) : ( `' f " ran E ) -onto-> _om ) -> _om ~<_* ( `' f " ran E ) ) |
|
| 37 | 22 35 36 | sylancr | |- ( f : A -onto-> _om -> _om ~<_* ( `' f " ran E ) ) |
| 38 | 7 | cnvex | |- `' f e. _V |
| 39 | 38 | imaex | |- ( `' f " ran E ) e. _V |
| 40 | isfin3-2 | |- ( ( `' f " ran E ) e. _V -> ( ( `' f " ran E ) e. Fin3 <-> -. _om ~<_* ( `' f " ran E ) ) ) |
|
| 41 | 39 40 | ax-mp | |- ( ( `' f " ran E ) e. Fin3 <-> -. _om ~<_* ( `' f " ran E ) ) |
| 42 | 41 | con2bii | |- ( _om ~<_* ( `' f " ran E ) <-> -. ( `' f " ran E ) e. Fin3 ) |
| 43 | 37 42 | sylib | |- ( f : A -onto-> _om -> -. ( `' f " ran E ) e. Fin3 ) |
| 44 | 1 2 | fin1a2lem6 | |- ( S |` ran E ) : ran E -1-1-onto-> ( _om \ ran E ) |
| 45 | f1ocnv | |- ( ( S |` ran E ) : ran E -1-1-onto-> ( _om \ ran E ) -> `' ( S |` ran E ) : ( _om \ ran E ) -1-1-onto-> ran E ) |
|
| 46 | f1ofo | |- ( `' ( S |` ran E ) : ( _om \ ran E ) -1-1-onto-> ran E -> `' ( S |` ran E ) : ( _om \ ran E ) -onto-> ran E ) |
|
| 47 | 44 45 46 | mp2b | |- `' ( S |` ran E ) : ( _om \ ran E ) -onto-> ran E |
| 48 | foco | |- ( ( `' E : ran E -onto-> _om /\ `' ( S |` ran E ) : ( _om \ ran E ) -onto-> ran E ) -> ( `' E o. `' ( S |` ran E ) ) : ( _om \ ran E ) -onto-> _om ) |
|
| 49 | 17 47 48 | mp2an | |- ( `' E o. `' ( S |` ran E ) ) : ( _om \ ran E ) -onto-> _om |
| 50 | fofun | |- ( ( `' E o. `' ( S |` ran E ) ) : ( _om \ ran E ) -onto-> _om -> Fun ( `' E o. `' ( S |` ran E ) ) ) |
|
| 51 | 49 50 | ax-mp | |- Fun ( `' E o. `' ( S |` ran E ) ) |
| 52 | 7 | resex | |- ( f |` ( A \ ( `' f " ran E ) ) ) e. _V |
| 53 | cofunexg | |- ( ( Fun ( `' E o. `' ( S |` ran E ) ) /\ ( f |` ( A \ ( `' f " ran E ) ) ) e. _V ) -> ( ( `' E o. `' ( S |` ran E ) ) o. ( f |` ( A \ ( `' f " ran E ) ) ) ) e. _V ) |
|
| 54 | 51 52 53 | mp2an | |- ( ( `' E o. `' ( S |` ran E ) ) o. ( f |` ( A \ ( `' f " ran E ) ) ) ) e. _V |
| 55 | difss | |- ( A \ ( `' f " ran E ) ) C_ A |
|
| 56 | 8 | fdmd | |- ( f : A -onto-> _om -> dom f = A ) |
| 57 | 55 56 | sseqtrrid | |- ( f : A -onto-> _om -> ( A \ ( `' f " ran E ) ) C_ dom f ) |
| 58 | fores | |- ( ( Fun f /\ ( A \ ( `' f " ran E ) ) C_ dom f ) -> ( f |` ( A \ ( `' f " ran E ) ) ) : ( A \ ( `' f " ran E ) ) -onto-> ( f " ( A \ ( `' f " ran E ) ) ) ) |
|
| 59 | 23 57 58 | syl2anc | |- ( f : A -onto-> _om -> ( f |` ( A \ ( `' f " ran E ) ) ) : ( A \ ( `' f " ran E ) ) -onto-> ( f " ( A \ ( `' f " ran E ) ) ) ) |
| 60 | funcnvcnv | |- ( Fun f -> Fun `' `' f ) |
|
| 61 | imadif | |- ( Fun `' `' f -> ( `' f " ( _om \ ran E ) ) = ( ( `' f " _om ) \ ( `' f " ran E ) ) ) |
|
| 62 | 23 60 61 | 3syl | |- ( f : A -onto-> _om -> ( `' f " ( _om \ ran E ) ) = ( ( `' f " _om ) \ ( `' f " ran E ) ) ) |
| 63 | 62 | imaeq2d | |- ( f : A -onto-> _om -> ( f " ( `' f " ( _om \ ran E ) ) ) = ( f " ( ( `' f " _om ) \ ( `' f " ran E ) ) ) ) |
| 64 | difss | |- ( _om \ ran E ) C_ _om |
|
| 65 | foimacnv | |- ( ( f : A -onto-> _om /\ ( _om \ ran E ) C_ _om ) -> ( f " ( `' f " ( _om \ ran E ) ) ) = ( _om \ ran E ) ) |
|
| 66 | 64 65 | mpan2 | |- ( f : A -onto-> _om -> ( f " ( `' f " ( _om \ ran E ) ) ) = ( _om \ ran E ) ) |
| 67 | fimacnv | |- ( f : A --> _om -> ( `' f " _om ) = A ) |
|
| 68 | 8 67 | syl | |- ( f : A -onto-> _om -> ( `' f " _om ) = A ) |
| 69 | 68 | difeq1d | |- ( f : A -onto-> _om -> ( ( `' f " _om ) \ ( `' f " ran E ) ) = ( A \ ( `' f " ran E ) ) ) |
| 70 | 69 | imaeq2d | |- ( f : A -onto-> _om -> ( f " ( ( `' f " _om ) \ ( `' f " ran E ) ) ) = ( f " ( A \ ( `' f " ran E ) ) ) ) |
| 71 | 63 66 70 | 3eqtr3rd | |- ( f : A -onto-> _om -> ( f " ( A \ ( `' f " ran E ) ) ) = ( _om \ ran E ) ) |
| 72 | foeq3 | |- ( ( f " ( A \ ( `' f " ran E ) ) ) = ( _om \ ran E ) -> ( ( f |` ( A \ ( `' f " ran E ) ) ) : ( A \ ( `' f " ran E ) ) -onto-> ( f " ( A \ ( `' f " ran E ) ) ) <-> ( f |` ( A \ ( `' f " ran E ) ) ) : ( A \ ( `' f " ran E ) ) -onto-> ( _om \ ran E ) ) ) |
|
| 73 | 71 72 | syl | |- ( f : A -onto-> _om -> ( ( f |` ( A \ ( `' f " ran E ) ) ) : ( A \ ( `' f " ran E ) ) -onto-> ( f " ( A \ ( `' f " ran E ) ) ) <-> ( f |` ( A \ ( `' f " ran E ) ) ) : ( A \ ( `' f " ran E ) ) -onto-> ( _om \ ran E ) ) ) |
| 74 | 59 73 | mpbid | |- ( f : A -onto-> _om -> ( f |` ( A \ ( `' f " ran E ) ) ) : ( A \ ( `' f " ran E ) ) -onto-> ( _om \ ran E ) ) |
| 75 | foco | |- ( ( ( `' E o. `' ( S |` ran E ) ) : ( _om \ ran E ) -onto-> _om /\ ( f |` ( A \ ( `' f " ran E ) ) ) : ( A \ ( `' f " ran E ) ) -onto-> ( _om \ ran E ) ) -> ( ( `' E o. `' ( S |` ran E ) ) o. ( f |` ( A \ ( `' f " ran E ) ) ) ) : ( A \ ( `' f " ran E ) ) -onto-> _om ) |
|
| 76 | 49 74 75 | sylancr | |- ( f : A -onto-> _om -> ( ( `' E o. `' ( S |` ran E ) ) o. ( f |` ( A \ ( `' f " ran E ) ) ) ) : ( A \ ( `' f " ran E ) ) -onto-> _om ) |
| 77 | fowdom | |- ( ( ( ( `' E o. `' ( S |` ran E ) ) o. ( f |` ( A \ ( `' f " ran E ) ) ) ) e. _V /\ ( ( `' E o. `' ( S |` ran E ) ) o. ( f |` ( A \ ( `' f " ran E ) ) ) ) : ( A \ ( `' f " ran E ) ) -onto-> _om ) -> _om ~<_* ( A \ ( `' f " ran E ) ) ) |
|
| 78 | 54 76 77 | sylancr | |- ( f : A -onto-> _om -> _om ~<_* ( A \ ( `' f " ran E ) ) ) |
| 79 | difexg | |- ( A e. _V -> ( A \ ( `' f " ran E ) ) e. _V ) |
|
| 80 | isfin3-2 | |- ( ( A \ ( `' f " ran E ) ) e. _V -> ( ( A \ ( `' f " ran E ) ) e. Fin3 <-> -. _om ~<_* ( A \ ( `' f " ran E ) ) ) ) |
|
| 81 | 10 79 80 | 3syl | |- ( f : A -onto-> _om -> ( ( A \ ( `' f " ran E ) ) e. Fin3 <-> -. _om ~<_* ( A \ ( `' f " ran E ) ) ) ) |
| 82 | 81 | con2bid | |- ( f : A -onto-> _om -> ( _om ~<_* ( A \ ( `' f " ran E ) ) <-> -. ( A \ ( `' f " ran E ) ) e. Fin3 ) ) |
| 83 | 78 82 | mpbid | |- ( f : A -onto-> _om -> -. ( A \ ( `' f " ran E ) ) e. Fin3 ) |
| 84 | eleq1 | |- ( y = ( `' f " ran E ) -> ( y e. Fin3 <-> ( `' f " ran E ) e. Fin3 ) ) |
|
| 85 | difeq2 | |- ( y = ( `' f " ran E ) -> ( A \ y ) = ( A \ ( `' f " ran E ) ) ) |
|
| 86 | 85 | eleq1d | |- ( y = ( `' f " ran E ) -> ( ( A \ y ) e. Fin3 <-> ( A \ ( `' f " ran E ) ) e. Fin3 ) ) |
| 87 | 84 86 | orbi12d | |- ( y = ( `' f " ran E ) -> ( ( y e. Fin3 \/ ( A \ y ) e. Fin3 ) <-> ( ( `' f " ran E ) e. Fin3 \/ ( A \ ( `' f " ran E ) ) e. Fin3 ) ) ) |
| 88 | 87 | notbid | |- ( y = ( `' f " ran E ) -> ( -. ( y e. Fin3 \/ ( A \ y ) e. Fin3 ) <-> -. ( ( `' f " ran E ) e. Fin3 \/ ( A \ ( `' f " ran E ) ) e. Fin3 ) ) ) |
| 89 | ioran | |- ( -. ( ( `' f " ran E ) e. Fin3 \/ ( A \ ( `' f " ran E ) ) e. Fin3 ) <-> ( -. ( `' f " ran E ) e. Fin3 /\ -. ( A \ ( `' f " ran E ) ) e. Fin3 ) ) |
|
| 90 | 88 89 | bitrdi | |- ( y = ( `' f " ran E ) -> ( -. ( y e. Fin3 \/ ( A \ y ) e. Fin3 ) <-> ( -. ( `' f " ran E ) e. Fin3 /\ -. ( A \ ( `' f " ran E ) ) e. Fin3 ) ) ) |
| 91 | 90 | rspcev | |- ( ( ( `' f " ran E ) e. ~P A /\ ( -. ( `' f " ran E ) e. Fin3 /\ -. ( A \ ( `' f " ran E ) ) e. Fin3 ) ) -> E. y e. ~P A -. ( y e. Fin3 \/ ( A \ y ) e. Fin3 ) ) |
| 92 | 13 43 83 91 | syl12anc | |- ( f : A -onto-> _om -> E. y e. ~P A -. ( y e. Fin3 \/ ( A \ y ) e. Fin3 ) ) |
| 93 | rexnal | |- ( E. y e. ~P A -. ( y e. Fin3 \/ ( A \ y ) e. Fin3 ) <-> -. A. y e. ~P A ( y e. Fin3 \/ ( A \ y ) e. Fin3 ) ) |
|
| 94 | 92 93 | sylib | |- ( f : A -onto-> _om -> -. A. y e. ~P A ( y e. Fin3 \/ ( A \ y ) e. Fin3 ) ) |
| 95 | 94 | exlimiv | |- ( E. f f : A -onto-> _om -> -. A. y e. ~P A ( y e. Fin3 \/ ( A \ y ) e. Fin3 ) ) |
| 96 | 6 95 | sylbi | |- ( _om ~<_* A -> -. A. y e. ~P A ( y e. Fin3 \/ ( A \ y ) e. Fin3 ) ) |
| 97 | 96 | con2i | |- ( A. y e. ~P A ( y e. Fin3 \/ ( A \ y ) e. Fin3 ) -> -. _om ~<_* A ) |
| 98 | isfin3-2 | |- ( A e. V -> ( A e. Fin3 <-> -. _om ~<_* A ) ) |
|
| 99 | 97 98 | imbitrrid | |- ( A e. V -> ( A. y e. ~P A ( y e. Fin3 \/ ( A \ y ) e. Fin3 ) -> A e. Fin3 ) ) |
| 100 | 99 | imp | |- ( ( A e. V /\ A. y e. ~P A ( y e. Fin3 \/ ( A \ y ) e. Fin3 ) ) -> A e. Fin3 ) |