This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An onto function implies weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fowdom | |- ( ( F e. V /\ F : Y -onto-> X ) -> X ~<_* Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( F e. V -> F e. _V ) |
|
| 2 | foeq1 | |- ( z = F -> ( z : Y -onto-> X <-> F : Y -onto-> X ) ) |
|
| 3 | 2 | spcegv | |- ( F e. _V -> ( F : Y -onto-> X -> E. z z : Y -onto-> X ) ) |
| 4 | 3 | imp | |- ( ( F e. _V /\ F : Y -onto-> X ) -> E. z z : Y -onto-> X ) |
| 5 | 4 | olcd | |- ( ( F e. _V /\ F : Y -onto-> X ) -> ( X = (/) \/ E. z z : Y -onto-> X ) ) |
| 6 | fof | |- ( F : Y -onto-> X -> F : Y --> X ) |
|
| 7 | dmfex | |- ( ( F e. _V /\ F : Y --> X ) -> Y e. _V ) |
|
| 8 | 6 7 | sylan2 | |- ( ( F e. _V /\ F : Y -onto-> X ) -> Y e. _V ) |
| 9 | brwdom | |- ( Y e. _V -> ( X ~<_* Y <-> ( X = (/) \/ E. z z : Y -onto-> X ) ) ) |
|
| 10 | 8 9 | syl | |- ( ( F e. _V /\ F : Y -onto-> X ) -> ( X ~<_* Y <-> ( X = (/) \/ E. z z : Y -onto-> X ) ) ) |
| 11 | 5 10 | mpbird | |- ( ( F e. _V /\ F : Y -onto-> X ) -> X ~<_* Y ) |
| 12 | 1 11 | sylan | |- ( ( F e. V /\ F : Y -onto-> X ) -> X ~<_* Y ) |