This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every Ia-finite set is II-finite. Theorem 1 of Levy58, p. 3. (Contributed by Stefan O'Rear, 8-Nov-2014) (Proof shortened by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin1a2 | |- ( A e. Fin1a -> A e. Fin2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi | |- ( b e. ~P A -> b C_ A ) |
|
| 2 | fin1ai | |- ( ( A e. Fin1a /\ b C_ A ) -> ( b e. Fin \/ ( A \ b ) e. Fin ) ) |
|
| 3 | fin12 | |- ( ( A \ b ) e. Fin -> ( A \ b ) e. Fin2 ) |
|
| 4 | 3 | orim2i | |- ( ( b e. Fin \/ ( A \ b ) e. Fin ) -> ( b e. Fin \/ ( A \ b ) e. Fin2 ) ) |
| 5 | 2 4 | syl | |- ( ( A e. Fin1a /\ b C_ A ) -> ( b e. Fin \/ ( A \ b ) e. Fin2 ) ) |
| 6 | 1 5 | sylan2 | |- ( ( A e. Fin1a /\ b e. ~P A ) -> ( b e. Fin \/ ( A \ b ) e. Fin2 ) ) |
| 7 | 6 | ralrimiva | |- ( A e. Fin1a -> A. b e. ~P A ( b e. Fin \/ ( A \ b ) e. Fin2 ) ) |
| 8 | fin1a2s | |- ( ( A e. Fin1a /\ A. b e. ~P A ( b e. Fin \/ ( A \ b ) e. Fin2 ) ) -> A e. Fin2 ) |
|
| 9 | 7 8 | mpdan | |- ( A e. Fin1a -> A e. Fin2 ) |