This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak dominance over nonempty sets. (Contributed by Stefan O'Rear, 11-Feb-2015) (Revised by Mario Carneiro, 5-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brwdomn0 | |- ( X =/= (/) -> ( X ~<_* Y <-> E. z z : Y -onto-> X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relwdom | |- Rel ~<_* |
|
| 2 | 1 | brrelex2i | |- ( X ~<_* Y -> Y e. _V ) |
| 3 | 2 | a1i | |- ( X =/= (/) -> ( X ~<_* Y -> Y e. _V ) ) |
| 4 | fof | |- ( z : Y -onto-> X -> z : Y --> X ) |
|
| 5 | 4 | fdmd | |- ( z : Y -onto-> X -> dom z = Y ) |
| 6 | vex | |- z e. _V |
|
| 7 | 6 | dmex | |- dom z e. _V |
| 8 | 5 7 | eqeltrrdi | |- ( z : Y -onto-> X -> Y e. _V ) |
| 9 | 8 | exlimiv | |- ( E. z z : Y -onto-> X -> Y e. _V ) |
| 10 | 9 | a1i | |- ( X =/= (/) -> ( E. z z : Y -onto-> X -> Y e. _V ) ) |
| 11 | brwdom | |- ( Y e. _V -> ( X ~<_* Y <-> ( X = (/) \/ E. z z : Y -onto-> X ) ) ) |
|
| 12 | df-ne | |- ( X =/= (/) <-> -. X = (/) ) |
|
| 13 | biorf | |- ( -. X = (/) -> ( E. z z : Y -onto-> X <-> ( X = (/) \/ E. z z : Y -onto-> X ) ) ) |
|
| 14 | 12 13 | sylbi | |- ( X =/= (/) -> ( E. z z : Y -onto-> X <-> ( X = (/) \/ E. z z : Y -onto-> X ) ) ) |
| 15 | 14 | bicomd | |- ( X =/= (/) -> ( ( X = (/) \/ E. z z : Y -onto-> X ) <-> E. z z : Y -onto-> X ) ) |
| 16 | 11 15 | sylan9bbr | |- ( ( X =/= (/) /\ Y e. _V ) -> ( X ~<_* Y <-> E. z z : Y -onto-> X ) ) |
| 17 | 16 | ex | |- ( X =/= (/) -> ( Y e. _V -> ( X ~<_* Y <-> E. z z : Y -onto-> X ) ) ) |
| 18 | 3 10 17 | pm5.21ndd | |- ( X =/= (/) -> ( X ~<_* Y <-> E. z z : Y -onto-> X ) ) |