This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin1a2 . (Contributed by Stefan O'Rear, 7-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fin1a2lem.b | |- E = ( x e. _om |-> ( 2o .o x ) ) |
|
| Assertion | fin1a2lem4 | |- E : _om -1-1-> _om |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin1a2lem.b | |- E = ( x e. _om |-> ( 2o .o x ) ) |
|
| 2 | 2onn | |- 2o e. _om |
|
| 3 | nnmcl | |- ( ( 2o e. _om /\ x e. _om ) -> ( 2o .o x ) e. _om ) |
|
| 4 | 2 3 | mpan | |- ( x e. _om -> ( 2o .o x ) e. _om ) |
| 5 | 1 4 | fmpti | |- E : _om --> _om |
| 6 | 1 | fin1a2lem3 | |- ( a e. _om -> ( E ` a ) = ( 2o .o a ) ) |
| 7 | 1 | fin1a2lem3 | |- ( b e. _om -> ( E ` b ) = ( 2o .o b ) ) |
| 8 | 6 7 | eqeqan12d | |- ( ( a e. _om /\ b e. _om ) -> ( ( E ` a ) = ( E ` b ) <-> ( 2o .o a ) = ( 2o .o b ) ) ) |
| 9 | 2on | |- 2o e. On |
|
| 10 | 9 | a1i | |- ( ( a e. _om /\ b e. _om ) -> 2o e. On ) |
| 11 | nnon | |- ( a e. _om -> a e. On ) |
|
| 12 | 11 | adantr | |- ( ( a e. _om /\ b e. _om ) -> a e. On ) |
| 13 | nnon | |- ( b e. _om -> b e. On ) |
|
| 14 | 13 | adantl | |- ( ( a e. _om /\ b e. _om ) -> b e. On ) |
| 15 | 0lt1o | |- (/) e. 1o |
|
| 16 | elelsuc | |- ( (/) e. 1o -> (/) e. suc 1o ) |
|
| 17 | 15 16 | ax-mp | |- (/) e. suc 1o |
| 18 | df-2o | |- 2o = suc 1o |
|
| 19 | 17 18 | eleqtrri | |- (/) e. 2o |
| 20 | 19 | a1i | |- ( ( a e. _om /\ b e. _om ) -> (/) e. 2o ) |
| 21 | omcan | |- ( ( ( 2o e. On /\ a e. On /\ b e. On ) /\ (/) e. 2o ) -> ( ( 2o .o a ) = ( 2o .o b ) <-> a = b ) ) |
|
| 22 | 10 12 14 20 21 | syl31anc | |- ( ( a e. _om /\ b e. _om ) -> ( ( 2o .o a ) = ( 2o .o b ) <-> a = b ) ) |
| 23 | 8 22 | bitrd | |- ( ( a e. _om /\ b e. _om ) -> ( ( E ` a ) = ( E ` b ) <-> a = b ) ) |
| 24 | 23 | biimpd | |- ( ( a e. _om /\ b e. _om ) -> ( ( E ` a ) = ( E ` b ) -> a = b ) ) |
| 25 | 24 | rgen2 | |- A. a e. _om A. b e. _om ( ( E ` a ) = ( E ` b ) -> a = b ) |
| 26 | dff13 | |- ( E : _om -1-1-> _om <-> ( E : _om --> _om /\ A. a e. _om A. b e. _om ( ( E ` a ) = ( E ` b ) -> a = b ) ) ) |
|
| 27 | 5 25 26 | mpbir2an | |- E : _om -1-1-> _om |