This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of onto functions. (Contributed by NM, 22-Mar-2006) (Proof shortened by AV, 29-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | foco | |- ( ( F : B -onto-> C /\ G : A -onto-> B ) -> ( F o. G ) : A -onto-> C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( F : B -onto-> C /\ G : A -onto-> B ) -> F : B -onto-> C ) |
|
| 2 | fofun | |- ( G : A -onto-> B -> Fun G ) |
|
| 3 | 2 | adantl | |- ( ( F : B -onto-> C /\ G : A -onto-> B ) -> Fun G ) |
| 4 | forn | |- ( G : A -onto-> B -> ran G = B ) |
|
| 5 | eqimss2 | |- ( ran G = B -> B C_ ran G ) |
|
| 6 | 4 5 | syl | |- ( G : A -onto-> B -> B C_ ran G ) |
| 7 | 6 | adantl | |- ( ( F : B -onto-> C /\ G : A -onto-> B ) -> B C_ ran G ) |
| 8 | focofo | |- ( ( F : B -onto-> C /\ Fun G /\ B C_ ran G ) -> ( F o. G ) : ( `' G " B ) -onto-> C ) |
|
| 9 | 1 3 7 8 | syl3anc | |- ( ( F : B -onto-> C /\ G : A -onto-> B ) -> ( F o. G ) : ( `' G " B ) -onto-> C ) |
| 10 | focnvimacdmdm | |- ( G : A -onto-> B -> ( `' G " B ) = A ) |
|
| 11 | 10 | eqcomd | |- ( G : A -onto-> B -> A = ( `' G " B ) ) |
| 12 | 11 | adantl | |- ( ( F : B -onto-> C /\ G : A -onto-> B ) -> A = ( `' G " B ) ) |
| 13 | foeq2 | |- ( A = ( `' G " B ) -> ( ( F o. G ) : A -onto-> C <-> ( F o. G ) : ( `' G " B ) -onto-> C ) ) |
|
| 14 | 12 13 | syl | |- ( ( F : B -onto-> C /\ G : A -onto-> B ) -> ( ( F o. G ) : A -onto-> C <-> ( F o. G ) : ( `' G " B ) -onto-> C ) ) |
| 15 | 9 14 | mpbird | |- ( ( F : B -onto-> C /\ G : A -onto-> B ) -> ( F o. G ) : A -onto-> C ) |