This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero natural number is a successor. (Contributed by NM, 18-Feb-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnsuc | |- ( ( A e. _om /\ A =/= (/) ) -> E. x e. _om A = suc x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnlim | |- ( A e. _om -> -. Lim A ) |
|
| 2 | 1 | adantr | |- ( ( A e. _om /\ A =/= (/) ) -> -. Lim A ) |
| 3 | nnord | |- ( A e. _om -> Ord A ) |
|
| 4 | orduninsuc | |- ( Ord A -> ( A = U. A <-> -. E. x e. On A = suc x ) ) |
|
| 5 | 4 | adantr | |- ( ( Ord A /\ A =/= (/) ) -> ( A = U. A <-> -. E. x e. On A = suc x ) ) |
| 6 | df-lim | |- ( Lim A <-> ( Ord A /\ A =/= (/) /\ A = U. A ) ) |
|
| 7 | 6 | biimpri | |- ( ( Ord A /\ A =/= (/) /\ A = U. A ) -> Lim A ) |
| 8 | 7 | 3expia | |- ( ( Ord A /\ A =/= (/) ) -> ( A = U. A -> Lim A ) ) |
| 9 | 5 8 | sylbird | |- ( ( Ord A /\ A =/= (/) ) -> ( -. E. x e. On A = suc x -> Lim A ) ) |
| 10 | 3 9 | sylan | |- ( ( A e. _om /\ A =/= (/) ) -> ( -. E. x e. On A = suc x -> Lim A ) ) |
| 11 | 2 10 | mt3d | |- ( ( A e. _om /\ A =/= (/) ) -> E. x e. On A = suc x ) |
| 12 | eleq1 | |- ( A = suc x -> ( A e. _om <-> suc x e. _om ) ) |
|
| 13 | 12 | biimpcd | |- ( A e. _om -> ( A = suc x -> suc x e. _om ) ) |
| 14 | peano2b | |- ( x e. _om <-> suc x e. _om ) |
|
| 15 | 13 14 | imbitrrdi | |- ( A e. _om -> ( A = suc x -> x e. _om ) ) |
| 16 | 15 | ancrd | |- ( A e. _om -> ( A = suc x -> ( x e. _om /\ A = suc x ) ) ) |
| 17 | 16 | adantld | |- ( A e. _om -> ( ( x e. On /\ A = suc x ) -> ( x e. _om /\ A = suc x ) ) ) |
| 18 | 17 | reximdv2 | |- ( A e. _om -> ( E. x e. On A = suc x -> E. x e. _om A = suc x ) ) |
| 19 | 18 | adantr | |- ( ( A e. _om /\ A =/= (/) ) -> ( E. x e. On A = suc x -> E. x e. _om A = suc x ) ) |
| 20 | 11 19 | mpd | |- ( ( A e. _om /\ A =/= (/) ) -> E. x e. _om A = suc x ) |