This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin1a2 . The successor operation on the ordinal numbers is injective or one-to-one. Lemma 1.17 of Schloeder p. 2. (Contributed by Stefan O'Rear, 7-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fin1a2lem.a | |- S = ( x e. On |-> suc x ) |
|
| Assertion | fin1a2lem2 | |- S : On -1-1-> On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin1a2lem.a | |- S = ( x e. On |-> suc x ) |
|
| 2 | onsuc | |- ( x e. On -> suc x e. On ) |
|
| 3 | 1 2 | fmpti | |- S : On --> On |
| 4 | 1 | fin1a2lem1 | |- ( a e. On -> ( S ` a ) = suc a ) |
| 5 | 1 | fin1a2lem1 | |- ( b e. On -> ( S ` b ) = suc b ) |
| 6 | 4 5 | eqeqan12d | |- ( ( a e. On /\ b e. On ) -> ( ( S ` a ) = ( S ` b ) <-> suc a = suc b ) ) |
| 7 | suc11 | |- ( ( a e. On /\ b e. On ) -> ( suc a = suc b <-> a = b ) ) |
|
| 8 | 6 7 | bitrd | |- ( ( a e. On /\ b e. On ) -> ( ( S ` a ) = ( S ` b ) <-> a = b ) ) |
| 9 | 8 | biimpd | |- ( ( a e. On /\ b e. On ) -> ( ( S ` a ) = ( S ` b ) -> a = b ) ) |
| 10 | 9 | rgen2 | |- A. a e. On A. b e. On ( ( S ` a ) = ( S ` b ) -> a = b ) |
| 11 | dff13 | |- ( S : On -1-1-> On <-> ( S : On --> On /\ A. a e. On A. b e. On ( ( S ` a ) = ( S ` b ) -> a = b ) ) ) |
|
| 12 | 3 10 11 | mpbir2an | |- S : On -1-1-> On |