This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin1a2 . (Contributed by Stefan O'Rear, 7-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fin1a2lem.b | |- E = ( x e. _om |-> ( 2o .o x ) ) |
|
| Assertion | fin1a2lem5 | |- ( A e. _om -> ( A e. ran E <-> -. suc A e. ran E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin1a2lem.b | |- E = ( x e. _om |-> ( 2o .o x ) ) |
|
| 2 | nneob | |- ( A e. _om -> ( E. a e. _om A = ( 2o .o a ) <-> -. E. a e. _om suc A = ( 2o .o a ) ) ) |
|
| 3 | 1 | fin1a2lem4 | |- E : _om -1-1-> _om |
| 4 | f1fn | |- ( E : _om -1-1-> _om -> E Fn _om ) |
|
| 5 | 3 4 | ax-mp | |- E Fn _om |
| 6 | fvelrnb | |- ( E Fn _om -> ( A e. ran E <-> E. a e. _om ( E ` a ) = A ) ) |
|
| 7 | 5 6 | ax-mp | |- ( A e. ran E <-> E. a e. _om ( E ` a ) = A ) |
| 8 | eqcom | |- ( ( E ` a ) = A <-> A = ( E ` a ) ) |
|
| 9 | 1 | fin1a2lem3 | |- ( a e. _om -> ( E ` a ) = ( 2o .o a ) ) |
| 10 | 9 | eqeq2d | |- ( a e. _om -> ( A = ( E ` a ) <-> A = ( 2o .o a ) ) ) |
| 11 | 8 10 | bitrid | |- ( a e. _om -> ( ( E ` a ) = A <-> A = ( 2o .o a ) ) ) |
| 12 | 11 | rexbiia | |- ( E. a e. _om ( E ` a ) = A <-> E. a e. _om A = ( 2o .o a ) ) |
| 13 | 7 12 | bitri | |- ( A e. ran E <-> E. a e. _om A = ( 2o .o a ) ) |
| 14 | fvelrnb | |- ( E Fn _om -> ( suc A e. ran E <-> E. a e. _om ( E ` a ) = suc A ) ) |
|
| 15 | 5 14 | ax-mp | |- ( suc A e. ran E <-> E. a e. _om ( E ` a ) = suc A ) |
| 16 | eqcom | |- ( ( E ` a ) = suc A <-> suc A = ( E ` a ) ) |
|
| 17 | 9 | eqeq2d | |- ( a e. _om -> ( suc A = ( E ` a ) <-> suc A = ( 2o .o a ) ) ) |
| 18 | 16 17 | bitrid | |- ( a e. _om -> ( ( E ` a ) = suc A <-> suc A = ( 2o .o a ) ) ) |
| 19 | 18 | rexbiia | |- ( E. a e. _om ( E ` a ) = suc A <-> E. a e. _om suc A = ( 2o .o a ) ) |
| 20 | 15 19 | bitri | |- ( suc A e. ran E <-> E. a e. _om suc A = ( 2o .o a ) ) |
| 21 | 20 | notbii | |- ( -. suc A e. ran E <-> -. E. a e. _om suc A = ( 2o .o a ) ) |
| 22 | 2 13 21 | 3bitr4g | |- ( A e. _om -> ( A e. ran E <-> -. suc A e. ran E ) ) |