This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derive the abbreviated version of the Axiom of Pairing from ax-pr . See zfpair for its derivation from the other axioms. (Contributed by NM, 14-Nov-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zfpair2 | |- { x , y } e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-pr | |- E. z A. w ( ( w = x \/ w = y ) -> w e. z ) |
|
| 2 | 1 | sepexi | |- E. z A. w ( w e. z <-> ( w = x \/ w = y ) ) |
| 3 | dfcleq | |- ( z = { x , y } <-> A. w ( w e. z <-> w e. { x , y } ) ) |
|
| 4 | vex | |- w e. _V |
|
| 5 | 4 | elpr | |- ( w e. { x , y } <-> ( w = x \/ w = y ) ) |
| 6 | 5 | bibi2i | |- ( ( w e. z <-> w e. { x , y } ) <-> ( w e. z <-> ( w = x \/ w = y ) ) ) |
| 7 | 6 | albii | |- ( A. w ( w e. z <-> w e. { x , y } ) <-> A. w ( w e. z <-> ( w = x \/ w = y ) ) ) |
| 8 | 3 7 | bitri | |- ( z = { x , y } <-> A. w ( w e. z <-> ( w = x \/ w = y ) ) ) |
| 9 | 8 | exbii | |- ( E. z z = { x , y } <-> E. z A. w ( w e. z <-> ( w = x \/ w = y ) ) ) |
| 10 | 2 9 | mpbir | |- E. z z = { x , y } |
| 11 | 10 | issetri | |- { x , y } e. _V |