This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a set function is one-to-one, then a subset of its domain is equinumerous to the image of that subset. (This version of f1imaeng does not need ax-rep nor ax-pow .) (Contributed by BTernaryTau, 13-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1imaen3g | |- ( ( F : A -1-1-> B /\ C C_ A /\ F e. V ) -> C ~~ ( F " C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resexg | |- ( F e. V -> ( F |` C ) e. _V ) |
|
| 2 | 1 | 3ad2ant3 | |- ( ( F : A -1-1-> B /\ C C_ A /\ F e. V ) -> ( F |` C ) e. _V ) |
| 3 | f1ores | |- ( ( F : A -1-1-> B /\ C C_ A ) -> ( F |` C ) : C -1-1-onto-> ( F " C ) ) |
|
| 4 | 3 | 3adant3 | |- ( ( F : A -1-1-> B /\ C C_ A /\ F e. V ) -> ( F |` C ) : C -1-1-onto-> ( F " C ) ) |
| 5 | f1oen3g | |- ( ( ( F |` C ) e. _V /\ ( F |` C ) : C -1-1-onto-> ( F " C ) ) -> C ~~ ( F " C ) ) |
|
| 6 | 2 4 5 | syl2anc | |- ( ( F : A -1-1-> B /\ C C_ A /\ F e. V ) -> C ~~ ( F " C ) ) |