This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty set is equinumerous only to itself. (Contributed by BTernaryTau, 29-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en0r | |- ( (/) ~~ A <-> A = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv | |- ( (/) ~~ A -> ( (/) e. _V /\ A e. _V ) ) |
|
| 2 | breng | |- ( ( (/) e. _V /\ A e. _V ) -> ( (/) ~~ A <-> E. f f : (/) -1-1-onto-> A ) ) |
|
| 3 | 1 2 | syl | |- ( (/) ~~ A -> ( (/) ~~ A <-> E. f f : (/) -1-1-onto-> A ) ) |
| 4 | 3 | ibi | |- ( (/) ~~ A -> E. f f : (/) -1-1-onto-> A ) |
| 5 | f1o00 | |- ( f : (/) -1-1-onto-> A <-> ( f = (/) /\ A = (/) ) ) |
|
| 6 | 5 | simprbi | |- ( f : (/) -1-1-onto-> A -> A = (/) ) |
| 7 | 6 | exlimiv | |- ( E. f f : (/) -1-1-onto-> A -> A = (/) ) |
| 8 | 4 7 | syl | |- ( (/) ~~ A -> A = (/) ) |
| 9 | 0ex | |- (/) e. _V |
|
| 10 | f1oeq1 | |- ( f = (/) -> ( f : (/) -1-1-onto-> (/) <-> (/) : (/) -1-1-onto-> (/) ) ) |
|
| 11 | f1o0 | |- (/) : (/) -1-1-onto-> (/) |
|
| 12 | 9 10 11 | ceqsexv2d | |- E. f f : (/) -1-1-onto-> (/) |
| 13 | breng | |- ( ( (/) e. _V /\ (/) e. _V ) -> ( (/) ~~ (/) <-> E. f f : (/) -1-1-onto-> (/) ) ) |
|
| 14 | 9 9 13 | mp2an | |- ( (/) ~~ (/) <-> E. f f : (/) -1-1-onto-> (/) ) |
| 15 | 12 14 | mpbir | |- (/) ~~ (/) |
| 16 | breq2 | |- ( A = (/) -> ( (/) ~~ A <-> (/) ~~ (/) ) ) |
|
| 17 | 15 16 | mpbiri | |- ( A = (/) -> (/) ~~ A ) |
| 18 | 8 17 | impbii | |- ( (/) ~~ A <-> A = (/) ) |