This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A division ring is a domain. (Contributed by Mario Carneiro, 29-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | drngdomn | |- ( R e. DivRing -> R e. Domn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngnzr | |- ( R e. DivRing -> R e. NzRing ) |
|
| 2 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 3 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
| 4 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 5 | 2 3 4 | isdrng | |- ( R e. DivRing <-> ( R e. Ring /\ ( Unit ` R ) = ( ( Base ` R ) \ { ( 0g ` R ) } ) ) ) |
| 6 | 5 | simprbi | |- ( R e. DivRing -> ( Unit ` R ) = ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |
| 7 | drngring | |- ( R e. DivRing -> R e. Ring ) |
|
| 8 | eqid | |- ( RLReg ` R ) = ( RLReg ` R ) |
|
| 9 | 8 3 | unitrrg | |- ( R e. Ring -> ( Unit ` R ) C_ ( RLReg ` R ) ) |
| 10 | 7 9 | syl | |- ( R e. DivRing -> ( Unit ` R ) C_ ( RLReg ` R ) ) |
| 11 | 6 10 | eqsstrrd | |- ( R e. DivRing -> ( ( Base ` R ) \ { ( 0g ` R ) } ) C_ ( RLReg ` R ) ) |
| 12 | 2 8 4 | isdomn2 | |- ( R e. Domn <-> ( R e. NzRing /\ ( ( Base ` R ) \ { ( 0g ` R ) } ) C_ ( RLReg ` R ) ) ) |
| 13 | 1 11 12 | sylanbrc | |- ( R e. DivRing -> R e. Domn ) |