This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fidomndrng . (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fidomndrng.b | |- B = ( Base ` R ) |
|
| fidomndrng.z | |- .0. = ( 0g ` R ) |
||
| fidomndrng.o | |- .1. = ( 1r ` R ) |
||
| fidomndrng.d | |- .|| = ( ||r ` R ) |
||
| fidomndrng.t | |- .x. = ( .r ` R ) |
||
| fidomndrng.r | |- ( ph -> R e. Domn ) |
||
| fidomndrng.x | |- ( ph -> B e. Fin ) |
||
| fidomndrng.a | |- ( ph -> A e. ( B \ { .0. } ) ) |
||
| fidomndrng.f | |- F = ( x e. B |-> ( x .x. A ) ) |
||
| Assertion | fidomndrnglem | |- ( ph -> A .|| .1. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fidomndrng.b | |- B = ( Base ` R ) |
|
| 2 | fidomndrng.z | |- .0. = ( 0g ` R ) |
|
| 3 | fidomndrng.o | |- .1. = ( 1r ` R ) |
|
| 4 | fidomndrng.d | |- .|| = ( ||r ` R ) |
|
| 5 | fidomndrng.t | |- .x. = ( .r ` R ) |
|
| 6 | fidomndrng.r | |- ( ph -> R e. Domn ) |
|
| 7 | fidomndrng.x | |- ( ph -> B e. Fin ) |
|
| 8 | fidomndrng.a | |- ( ph -> A e. ( B \ { .0. } ) ) |
|
| 9 | fidomndrng.f | |- F = ( x e. B |-> ( x .x. A ) ) |
|
| 10 | 8 | eldifad | |- ( ph -> A e. B ) |
| 11 | eldifsni | |- ( A e. ( B \ { .0. } ) -> A =/= .0. ) |
|
| 12 | 8 11 | syl | |- ( ph -> A =/= .0. ) |
| 13 | 12 | ad2antrr | |- ( ( ( ph /\ y e. B ) /\ ( F ` y ) = .0. ) -> A =/= .0. ) |
| 14 | oveq1 | |- ( x = y -> ( x .x. A ) = ( y .x. A ) ) |
|
| 15 | ovex | |- ( y .x. A ) e. _V |
|
| 16 | 14 9 15 | fvmpt | |- ( y e. B -> ( F ` y ) = ( y .x. A ) ) |
| 17 | 16 | adantl | |- ( ( ph /\ y e. B ) -> ( F ` y ) = ( y .x. A ) ) |
| 18 | 17 | eqeq1d | |- ( ( ph /\ y e. B ) -> ( ( F ` y ) = .0. <-> ( y .x. A ) = .0. ) ) |
| 19 | 6 | adantr | |- ( ( ph /\ y e. B ) -> R e. Domn ) |
| 20 | simpr | |- ( ( ph /\ y e. B ) -> y e. B ) |
|
| 21 | 10 | adantr | |- ( ( ph /\ y e. B ) -> A e. B ) |
| 22 | 1 5 2 | domneq0 | |- ( ( R e. Domn /\ y e. B /\ A e. B ) -> ( ( y .x. A ) = .0. <-> ( y = .0. \/ A = .0. ) ) ) |
| 23 | 19 20 21 22 | syl3anc | |- ( ( ph /\ y e. B ) -> ( ( y .x. A ) = .0. <-> ( y = .0. \/ A = .0. ) ) ) |
| 24 | 18 23 | bitrd | |- ( ( ph /\ y e. B ) -> ( ( F ` y ) = .0. <-> ( y = .0. \/ A = .0. ) ) ) |
| 25 | 24 | biimpa | |- ( ( ( ph /\ y e. B ) /\ ( F ` y ) = .0. ) -> ( y = .0. \/ A = .0. ) ) |
| 26 | 25 | ord | |- ( ( ( ph /\ y e. B ) /\ ( F ` y ) = .0. ) -> ( -. y = .0. -> A = .0. ) ) |
| 27 | 26 | necon1ad | |- ( ( ( ph /\ y e. B ) /\ ( F ` y ) = .0. ) -> ( A =/= .0. -> y = .0. ) ) |
| 28 | 13 27 | mpd | |- ( ( ( ph /\ y e. B ) /\ ( F ` y ) = .0. ) -> y = .0. ) |
| 29 | 28 | ex | |- ( ( ph /\ y e. B ) -> ( ( F ` y ) = .0. -> y = .0. ) ) |
| 30 | 29 | ralrimiva | |- ( ph -> A. y e. B ( ( F ` y ) = .0. -> y = .0. ) ) |
| 31 | domnring | |- ( R e. Domn -> R e. Ring ) |
|
| 32 | 6 31 | syl | |- ( ph -> R e. Ring ) |
| 33 | 1 5 | ringrghm | |- ( ( R e. Ring /\ A e. B ) -> ( x e. B |-> ( x .x. A ) ) e. ( R GrpHom R ) ) |
| 34 | 32 10 33 | syl2anc | |- ( ph -> ( x e. B |-> ( x .x. A ) ) e. ( R GrpHom R ) ) |
| 35 | 9 34 | eqeltrid | |- ( ph -> F e. ( R GrpHom R ) ) |
| 36 | 1 1 2 2 | ghmf1 | |- ( F e. ( R GrpHom R ) -> ( F : B -1-1-> B <-> A. y e. B ( ( F ` y ) = .0. -> y = .0. ) ) ) |
| 37 | 35 36 | syl | |- ( ph -> ( F : B -1-1-> B <-> A. y e. B ( ( F ` y ) = .0. -> y = .0. ) ) ) |
| 38 | 30 37 | mpbird | |- ( ph -> F : B -1-1-> B ) |
| 39 | enreffi | |- ( B e. Fin -> B ~~ B ) |
|
| 40 | 7 39 | syl | |- ( ph -> B ~~ B ) |
| 41 | f1finf1o | |- ( ( B ~~ B /\ B e. Fin ) -> ( F : B -1-1-> B <-> F : B -1-1-onto-> B ) ) |
|
| 42 | 40 7 41 | syl2anc | |- ( ph -> ( F : B -1-1-> B <-> F : B -1-1-onto-> B ) ) |
| 43 | 38 42 | mpbid | |- ( ph -> F : B -1-1-onto-> B ) |
| 44 | f1ocnv | |- ( F : B -1-1-onto-> B -> `' F : B -1-1-onto-> B ) |
|
| 45 | f1of | |- ( `' F : B -1-1-onto-> B -> `' F : B --> B ) |
|
| 46 | 43 44 45 | 3syl | |- ( ph -> `' F : B --> B ) |
| 47 | 1 3 | ringidcl | |- ( R e. Ring -> .1. e. B ) |
| 48 | 32 47 | syl | |- ( ph -> .1. e. B ) |
| 49 | 46 48 | ffvelcdmd | |- ( ph -> ( `' F ` .1. ) e. B ) |
| 50 | 1 4 5 | dvdsrmul | |- ( ( A e. B /\ ( `' F ` .1. ) e. B ) -> A .|| ( ( `' F ` .1. ) .x. A ) ) |
| 51 | 10 49 50 | syl2anc | |- ( ph -> A .|| ( ( `' F ` .1. ) .x. A ) ) |
| 52 | oveq1 | |- ( y = ( `' F ` .1. ) -> ( y .x. A ) = ( ( `' F ` .1. ) .x. A ) ) |
|
| 53 | 14 | cbvmptv | |- ( x e. B |-> ( x .x. A ) ) = ( y e. B |-> ( y .x. A ) ) |
| 54 | 9 53 | eqtri | |- F = ( y e. B |-> ( y .x. A ) ) |
| 55 | ovex | |- ( ( `' F ` .1. ) .x. A ) e. _V |
|
| 56 | 52 54 55 | fvmpt | |- ( ( `' F ` .1. ) e. B -> ( F ` ( `' F ` .1. ) ) = ( ( `' F ` .1. ) .x. A ) ) |
| 57 | 49 56 | syl | |- ( ph -> ( F ` ( `' F ` .1. ) ) = ( ( `' F ` .1. ) .x. A ) ) |
| 58 | f1ocnvfv2 | |- ( ( F : B -1-1-onto-> B /\ .1. e. B ) -> ( F ` ( `' F ` .1. ) ) = .1. ) |
|
| 59 | 43 48 58 | syl2anc | |- ( ph -> ( F ` ( `' F ` .1. ) ) = .1. ) |
| 60 | 57 59 | eqtr3d | |- ( ph -> ( ( `' F ` .1. ) .x. A ) = .1. ) |
| 61 | 51 60 | breqtrd | |- ( ph -> A .|| .1. ) |