This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The additive identity is a unit if and only if 1 = 0 , i.e. we are in the zero ring. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0unit.1 | |- U = ( Unit ` R ) |
|
| 0unit.2 | |- .0. = ( 0g ` R ) |
||
| 0unit.3 | |- .1. = ( 1r ` R ) |
||
| Assertion | 0unit | |- ( R e. Ring -> ( .0. e. U <-> .1. = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0unit.1 | |- U = ( Unit ` R ) |
|
| 2 | 0unit.2 | |- .0. = ( 0g ` R ) |
|
| 3 | 0unit.3 | |- .1. = ( 1r ` R ) |
|
| 4 | eqid | |- ( invr ` R ) = ( invr ` R ) |
|
| 5 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 6 | 1 4 5 3 | unitrinv | |- ( ( R e. Ring /\ .0. e. U ) -> ( .0. ( .r ` R ) ( ( invr ` R ) ` .0. ) ) = .1. ) |
| 7 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 8 | 1 4 7 | ringinvcl | |- ( ( R e. Ring /\ .0. e. U ) -> ( ( invr ` R ) ` .0. ) e. ( Base ` R ) ) |
| 9 | 7 5 2 | ringlz | |- ( ( R e. Ring /\ ( ( invr ` R ) ` .0. ) e. ( Base ` R ) ) -> ( .0. ( .r ` R ) ( ( invr ` R ) ` .0. ) ) = .0. ) |
| 10 | 8 9 | syldan | |- ( ( R e. Ring /\ .0. e. U ) -> ( .0. ( .r ` R ) ( ( invr ` R ) ` .0. ) ) = .0. ) |
| 11 | 6 10 | eqtr3d | |- ( ( R e. Ring /\ .0. e. U ) -> .1. = .0. ) |
| 12 | simpr | |- ( ( R e. Ring /\ .1. = .0. ) -> .1. = .0. ) |
|
| 13 | 1 3 | 1unit | |- ( R e. Ring -> .1. e. U ) |
| 14 | 13 | adantr | |- ( ( R e. Ring /\ .1. = .0. ) -> .1. e. U ) |
| 15 | 12 14 | eqeltrrd | |- ( ( R e. Ring /\ .1. = .0. ) -> .0. e. U ) |
| 16 | 11 15 | impbida | |- ( R e. Ring -> ( .0. e. U <-> .1. = .0. ) ) |