This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Give a formula for the evaluation of a polynomial. (Contributed by SN, 9-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsvval.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| evlsvval.p | |- P = ( I mPoly U ) |
||
| evlsvval.b | |- B = ( Base ` P ) |
||
| evlsvval.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
||
| evlsvval.k | |- K = ( Base ` S ) |
||
| evlsvval.u | |- U = ( S |`s R ) |
||
| evlsvval.t | |- T = ( S ^s ( K ^m I ) ) |
||
| evlsvval.m | |- M = ( mulGrp ` T ) |
||
| evlsvval.w | |- .^ = ( .g ` M ) |
||
| evlsvval.x | |- .x. = ( .r ` T ) |
||
| evlsvval.f | |- F = ( x e. R |-> ( ( K ^m I ) X. { x } ) ) |
||
| evlsvval.g | |- G = ( x e. I |-> ( a e. ( K ^m I ) |-> ( a ` x ) ) ) |
||
| evlsvval.i | |- ( ph -> I e. V ) |
||
| evlsvval.s | |- ( ph -> S e. CRing ) |
||
| evlsvval.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| evlsvval.a | |- ( ph -> A e. B ) |
||
| Assertion | evlsvval | |- ( ph -> ( Q ` A ) = ( T gsum ( b e. D |-> ( ( F ` ( A ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsvval.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| 2 | evlsvval.p | |- P = ( I mPoly U ) |
|
| 3 | evlsvval.b | |- B = ( Base ` P ) |
|
| 4 | evlsvval.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 5 | evlsvval.k | |- K = ( Base ` S ) |
|
| 6 | evlsvval.u | |- U = ( S |`s R ) |
|
| 7 | evlsvval.t | |- T = ( S ^s ( K ^m I ) ) |
|
| 8 | evlsvval.m | |- M = ( mulGrp ` T ) |
|
| 9 | evlsvval.w | |- .^ = ( .g ` M ) |
|
| 10 | evlsvval.x | |- .x. = ( .r ` T ) |
|
| 11 | evlsvval.f | |- F = ( x e. R |-> ( ( K ^m I ) X. { x } ) ) |
|
| 12 | evlsvval.g | |- G = ( x e. I |-> ( a e. ( K ^m I ) |-> ( a ` x ) ) ) |
|
| 13 | evlsvval.i | |- ( ph -> I e. V ) |
|
| 14 | evlsvval.s | |- ( ph -> S e. CRing ) |
|
| 15 | evlsvval.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 16 | evlsvval.a | |- ( ph -> A e. B ) |
|
| 17 | fveq1 | |- ( p = A -> ( p ` b ) = ( A ` b ) ) |
|
| 18 | 17 | fveq2d | |- ( p = A -> ( F ` ( p ` b ) ) = ( F ` ( A ` b ) ) ) |
| 19 | 18 | oveq1d | |- ( p = A -> ( ( F ` ( p ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) = ( ( F ` ( A ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) |
| 20 | 19 | mpteq2dv | |- ( p = A -> ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) = ( b e. D |-> ( ( F ` ( A ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) |
| 21 | 20 | oveq2d | |- ( p = A -> ( T gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) = ( T gsum ( b e. D |-> ( ( F ` ( A ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) ) |
| 22 | eqid | |- ( p e. B |-> ( T gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) ) = ( p e. B |-> ( T gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) ) |
|
| 23 | 1 2 3 4 5 6 7 8 9 10 22 11 12 13 14 15 | evlsval3 | |- ( ph -> Q = ( p e. B |-> ( T gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) ) ) |
| 24 | ovexd | |- ( ph -> ( T gsum ( b e. D |-> ( ( F ` ( A ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) e. _V ) |
|
| 25 | 21 23 16 24 | fvmptd4 | |- ( ph -> ( Q ` A ) = ( T gsum ( b e. D |-> ( ( F ` ( A ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) ) |