This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the polynomial evaluation map function. (Contributed by Stefan O'Rear, 11-Mar-2015) (Revised by AV, 18-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsval.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| evlsval.w | |- W = ( I mPoly U ) |
||
| evlsval.v | |- V = ( I mVar U ) |
||
| evlsval.u | |- U = ( S |`s R ) |
||
| evlsval.t | |- T = ( S ^s ( B ^m I ) ) |
||
| evlsval.b | |- B = ( Base ` S ) |
||
| evlsval.a | |- A = ( algSc ` W ) |
||
| evlsval.x | |- X = ( x e. R |-> ( ( B ^m I ) X. { x } ) ) |
||
| evlsval.y | |- Y = ( x e. I |-> ( g e. ( B ^m I ) |-> ( g ` x ) ) ) |
||
| Assertion | evlsval | |- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q = ( iota_ f e. ( W RingHom T ) ( ( f o. A ) = X /\ ( f o. V ) = Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsval.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| 2 | evlsval.w | |- W = ( I mPoly U ) |
|
| 3 | evlsval.v | |- V = ( I mVar U ) |
|
| 4 | evlsval.u | |- U = ( S |`s R ) |
|
| 5 | evlsval.t | |- T = ( S ^s ( B ^m I ) ) |
|
| 6 | evlsval.b | |- B = ( Base ` S ) |
|
| 7 | evlsval.a | |- A = ( algSc ` W ) |
|
| 8 | evlsval.x | |- X = ( x e. R |-> ( ( B ^m I ) X. { x } ) ) |
|
| 9 | evlsval.y | |- Y = ( x e. I |-> ( g e. ( B ^m I ) |-> ( g ` x ) ) ) |
|
| 10 | elex | |- ( I e. Z -> I e. _V ) |
|
| 11 | fveq2 | |- ( s = S -> ( Base ` s ) = ( Base ` S ) ) |
|
| 12 | 11 | adantl | |- ( ( i = I /\ s = S ) -> ( Base ` s ) = ( Base ` S ) ) |
| 13 | 12 | csbeq1d | |- ( ( i = I /\ s = S ) -> [_ ( Base ` s ) / b ]_ ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) = [_ ( Base ` S ) / b ]_ ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) ) |
| 14 | fvex | |- ( Base ` S ) e. _V |
|
| 15 | 14 | a1i | |- ( ( i = I /\ s = S ) -> ( Base ` S ) e. _V ) |
| 16 | simplr | |- ( ( ( i = I /\ s = S ) /\ b = ( Base ` S ) ) -> s = S ) |
|
| 17 | 16 | fveq2d | |- ( ( ( i = I /\ s = S ) /\ b = ( Base ` S ) ) -> ( SubRing ` s ) = ( SubRing ` S ) ) |
| 18 | simpll | |- ( ( ( i = I /\ s = S ) /\ b = ( Base ` S ) ) -> i = I ) |
|
| 19 | oveq1 | |- ( s = S -> ( s |`s r ) = ( S |`s r ) ) |
|
| 20 | 19 | ad2antlr | |- ( ( ( i = I /\ s = S ) /\ b = ( Base ` S ) ) -> ( s |`s r ) = ( S |`s r ) ) |
| 21 | 18 20 | oveq12d | |- ( ( ( i = I /\ s = S ) /\ b = ( Base ` S ) ) -> ( i mPoly ( s |`s r ) ) = ( I mPoly ( S |`s r ) ) ) |
| 22 | 21 | csbeq1d | |- ( ( ( i = I /\ s = S ) /\ b = ( Base ` S ) ) -> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) = [_ ( I mPoly ( S |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) |
| 23 | ovexd | |- ( ( ( i = I /\ s = S ) /\ b = ( Base ` S ) ) -> ( I mPoly ( S |`s r ) ) e. _V ) |
|
| 24 | simprr | |- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> w = ( I mPoly ( S |`s r ) ) ) |
|
| 25 | simplr | |- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> s = S ) |
|
| 26 | simprl | |- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> b = ( Base ` S ) ) |
|
| 27 | simpll | |- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> i = I ) |
|
| 28 | 26 27 | oveq12d | |- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( b ^m i ) = ( ( Base ` S ) ^m I ) ) |
| 29 | 25 28 | oveq12d | |- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( s ^s ( b ^m i ) ) = ( S ^s ( ( Base ` S ) ^m I ) ) ) |
| 30 | 24 29 | oveq12d | |- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( w RingHom ( s ^s ( b ^m i ) ) ) = ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ) |
| 31 | 24 | fveq2d | |- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( algSc ` w ) = ( algSc ` ( I mPoly ( S |`s r ) ) ) ) |
| 32 | 31 | coeq2d | |- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( f o. ( algSc ` w ) ) = ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) ) |
| 33 | 28 | xpeq1d | |- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( ( b ^m i ) X. { x } ) = ( ( ( Base ` S ) ^m I ) X. { x } ) ) |
| 34 | 33 | mpteq2dv | |- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( x e. r |-> ( ( b ^m i ) X. { x } ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ) |
| 35 | 32 34 | eqeq12d | |- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) <-> ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ) ) |
| 36 | 25 | oveq1d | |- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( s |`s r ) = ( S |`s r ) ) |
| 37 | 27 36 | oveq12d | |- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( i mVar ( s |`s r ) ) = ( I mVar ( S |`s r ) ) ) |
| 38 | 37 | coeq2d | |- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( f o. ( i mVar ( s |`s r ) ) ) = ( f o. ( I mVar ( S |`s r ) ) ) ) |
| 39 | 28 | mpteq1d | |- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( g e. ( b ^m i ) |-> ( g ` x ) ) = ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) |
| 40 | 27 39 | mpteq12dv | |- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) |
| 41 | 38 40 | eqeq12d | |- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) <-> ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) |
| 42 | 35 41 | anbi12d | |- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) <-> ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) |
| 43 | 30 42 | riotaeqbidv | |- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) = ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) |
| 44 | 43 | anassrs | |- ( ( ( ( i = I /\ s = S ) /\ b = ( Base ` S ) ) /\ w = ( I mPoly ( S |`s r ) ) ) -> ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) = ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) |
| 45 | 23 44 | csbied | |- ( ( ( i = I /\ s = S ) /\ b = ( Base ` S ) ) -> [_ ( I mPoly ( S |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) = ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) |
| 46 | 22 45 | eqtrd | |- ( ( ( i = I /\ s = S ) /\ b = ( Base ` S ) ) -> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) = ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) |
| 47 | 17 46 | mpteq12dv | |- ( ( ( i = I /\ s = S ) /\ b = ( Base ` S ) ) -> ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) = ( r e. ( SubRing ` S ) |-> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) ) |
| 48 | 15 47 | csbied | |- ( ( i = I /\ s = S ) -> [_ ( Base ` S ) / b ]_ ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) = ( r e. ( SubRing ` S ) |-> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) ) |
| 49 | 13 48 | eqtrd | |- ( ( i = I /\ s = S ) -> [_ ( Base ` s ) / b ]_ ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) = ( r e. ( SubRing ` S ) |-> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) ) |
| 50 | df-evls | |- evalSub = ( i e. _V , s e. CRing |-> [_ ( Base ` s ) / b ]_ ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) ) |
|
| 51 | fvex | |- ( SubRing ` S ) e. _V |
|
| 52 | 51 | mptex | |- ( r e. ( SubRing ` S ) |-> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) e. _V |
| 53 | 49 50 52 | ovmpoa | |- ( ( I e. _V /\ S e. CRing ) -> ( I evalSub S ) = ( r e. ( SubRing ` S ) |-> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) ) |
| 54 | 53 | fveq1d | |- ( ( I e. _V /\ S e. CRing ) -> ( ( I evalSub S ) ` R ) = ( ( r e. ( SubRing ` S ) |-> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) ` R ) ) |
| 55 | 10 54 | sylan | |- ( ( I e. Z /\ S e. CRing ) -> ( ( I evalSub S ) ` R ) = ( ( r e. ( SubRing ` S ) |-> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) ` R ) ) |
| 56 | 1 55 | eqtrid | |- ( ( I e. Z /\ S e. CRing ) -> Q = ( ( r e. ( SubRing ` S ) |-> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) ` R ) ) |
| 57 | 56 | 3adant3 | |- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q = ( ( r e. ( SubRing ` S ) |-> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) ` R ) ) |
| 58 | oveq2 | |- ( r = R -> ( S |`s r ) = ( S |`s R ) ) |
|
| 59 | 58 | oveq2d | |- ( r = R -> ( I mPoly ( S |`s r ) ) = ( I mPoly ( S |`s R ) ) ) |
| 60 | 59 | oveq1d | |- ( r = R -> ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) = ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ) |
| 61 | 59 | fveq2d | |- ( r = R -> ( algSc ` ( I mPoly ( S |`s r ) ) ) = ( algSc ` ( I mPoly ( S |`s R ) ) ) ) |
| 62 | 61 | coeq2d | |- ( r = R -> ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( f o. ( algSc ` ( I mPoly ( S |`s R ) ) ) ) ) |
| 63 | mpteq1 | |- ( r = R -> ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) = ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ) |
|
| 64 | 62 63 | eqeq12d | |- ( r = R -> ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) <-> ( f o. ( algSc ` ( I mPoly ( S |`s R ) ) ) ) = ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ) ) |
| 65 | 58 | oveq2d | |- ( r = R -> ( I mVar ( S |`s r ) ) = ( I mVar ( S |`s R ) ) ) |
| 66 | 65 | coeq2d | |- ( r = R -> ( f o. ( I mVar ( S |`s r ) ) ) = ( f o. ( I mVar ( S |`s R ) ) ) ) |
| 67 | 66 | eqeq1d | |- ( r = R -> ( ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) <-> ( f o. ( I mVar ( S |`s R ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) |
| 68 | 64 67 | anbi12d | |- ( r = R -> ( ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) <-> ( ( f o. ( algSc ` ( I mPoly ( S |`s R ) ) ) ) = ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s R ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) |
| 69 | 60 68 | riotaeqbidv | |- ( r = R -> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) = ( iota_ f e. ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s R ) ) ) ) = ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s R ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) |
| 70 | eqid | |- ( r e. ( SubRing ` S ) |-> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) = ( r e. ( SubRing ` S ) |-> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) |
|
| 71 | riotaex | |- ( iota_ f e. ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s R ) ) ) ) = ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s R ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) e. _V |
|
| 72 | 69 70 71 | fvmpt | |- ( R e. ( SubRing ` S ) -> ( ( r e. ( SubRing ` S ) |-> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) ` R ) = ( iota_ f e. ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s R ) ) ) ) = ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s R ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) |
| 73 | 4 | oveq2i | |- ( I mPoly U ) = ( I mPoly ( S |`s R ) ) |
| 74 | 2 73 | eqtri | |- W = ( I mPoly ( S |`s R ) ) |
| 75 | 6 | oveq1i | |- ( B ^m I ) = ( ( Base ` S ) ^m I ) |
| 76 | 75 | oveq2i | |- ( S ^s ( B ^m I ) ) = ( S ^s ( ( Base ` S ) ^m I ) ) |
| 77 | 5 76 | eqtri | |- T = ( S ^s ( ( Base ` S ) ^m I ) ) |
| 78 | 74 77 | oveq12i | |- ( W RingHom T ) = ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) |
| 79 | 78 | a1i | |- ( T. -> ( W RingHom T ) = ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ) |
| 80 | 74 | fveq2i | |- ( algSc ` W ) = ( algSc ` ( I mPoly ( S |`s R ) ) ) |
| 81 | 7 80 | eqtri | |- A = ( algSc ` ( I mPoly ( S |`s R ) ) ) |
| 82 | 81 | coeq2i | |- ( f o. A ) = ( f o. ( algSc ` ( I mPoly ( S |`s R ) ) ) ) |
| 83 | 75 | xpeq1i | |- ( ( B ^m I ) X. { x } ) = ( ( ( Base ` S ) ^m I ) X. { x } ) |
| 84 | 83 | mpteq2i | |- ( x e. R |-> ( ( B ^m I ) X. { x } ) ) = ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) |
| 85 | 8 84 | eqtri | |- X = ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) |
| 86 | 82 85 | eqeq12i | |- ( ( f o. A ) = X <-> ( f o. ( algSc ` ( I mPoly ( S |`s R ) ) ) ) = ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ) |
| 87 | 4 | oveq2i | |- ( I mVar U ) = ( I mVar ( S |`s R ) ) |
| 88 | 3 87 | eqtri | |- V = ( I mVar ( S |`s R ) ) |
| 89 | 88 | coeq2i | |- ( f o. V ) = ( f o. ( I mVar ( S |`s R ) ) ) |
| 90 | eqid | |- ( g ` x ) = ( g ` x ) |
|
| 91 | 75 90 | mpteq12i | |- ( g e. ( B ^m I ) |-> ( g ` x ) ) = ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) |
| 92 | 91 | mpteq2i | |- ( x e. I |-> ( g e. ( B ^m I ) |-> ( g ` x ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) |
| 93 | 9 92 | eqtri | |- Y = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) |
| 94 | 89 93 | eqeq12i | |- ( ( f o. V ) = Y <-> ( f o. ( I mVar ( S |`s R ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) |
| 95 | 86 94 | anbi12i | |- ( ( ( f o. A ) = X /\ ( f o. V ) = Y ) <-> ( ( f o. ( algSc ` ( I mPoly ( S |`s R ) ) ) ) = ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s R ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) |
| 96 | 95 | a1i | |- ( T. -> ( ( ( f o. A ) = X /\ ( f o. V ) = Y ) <-> ( ( f o. ( algSc ` ( I mPoly ( S |`s R ) ) ) ) = ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s R ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) |
| 97 | 79 96 | riotaeqbidv | |- ( T. -> ( iota_ f e. ( W RingHom T ) ( ( f o. A ) = X /\ ( f o. V ) = Y ) ) = ( iota_ f e. ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s R ) ) ) ) = ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s R ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) |
| 98 | 97 | mptru | |- ( iota_ f e. ( W RingHom T ) ( ( f o. A ) = X /\ ( f o. V ) = Y ) ) = ( iota_ f e. ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s R ) ) ) ) = ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s R ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) |
| 99 | 72 98 | eqtr4di | |- ( R e. ( SubRing ` S ) -> ( ( r e. ( SubRing ` S ) |-> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) ` R ) = ( iota_ f e. ( W RingHom T ) ( ( f o. A ) = X /\ ( f o. V ) = Y ) ) ) |
| 100 | 99 | 3ad2ant3 | |- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> ( ( r e. ( SubRing ` S ) |-> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) ` R ) = ( iota_ f e. ( W RingHom T ) ( ( f o. A ) = X /\ ( f o. V ) = Y ) ) ) |
| 101 | 57 100 | eqtrd | |- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q = ( iota_ f e. ( W RingHom T ) ( ( f o. A ) = X /\ ( f o. V ) = Y ) ) ) |