This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a ring homomorphism to a subring is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | resrhm.u | |- U = ( S |`s X ) |
|
| Assertion | resrhm | |- ( ( F e. ( S RingHom T ) /\ X e. ( SubRing ` S ) ) -> ( F |` X ) e. ( U RingHom T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resrhm.u | |- U = ( S |`s X ) |
|
| 2 | rhmrcl2 | |- ( F e. ( S RingHom T ) -> T e. Ring ) |
|
| 3 | 1 | subrgring | |- ( X e. ( SubRing ` S ) -> U e. Ring ) |
| 4 | 2 3 | anim12ci | |- ( ( F e. ( S RingHom T ) /\ X e. ( SubRing ` S ) ) -> ( U e. Ring /\ T e. Ring ) ) |
| 5 | rhmghm | |- ( F e. ( S RingHom T ) -> F e. ( S GrpHom T ) ) |
|
| 6 | subrgsubg | |- ( X e. ( SubRing ` S ) -> X e. ( SubGrp ` S ) ) |
|
| 7 | 1 | resghm | |- ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) -> ( F |` X ) e. ( U GrpHom T ) ) |
| 8 | 5 6 7 | syl2an | |- ( ( F e. ( S RingHom T ) /\ X e. ( SubRing ` S ) ) -> ( F |` X ) e. ( U GrpHom T ) ) |
| 9 | eqid | |- ( mulGrp ` S ) = ( mulGrp ` S ) |
|
| 10 | eqid | |- ( mulGrp ` T ) = ( mulGrp ` T ) |
|
| 11 | 9 10 | rhmmhm | |- ( F e. ( S RingHom T ) -> F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) |
| 12 | 9 | subrgsubm | |- ( X e. ( SubRing ` S ) -> X e. ( SubMnd ` ( mulGrp ` S ) ) ) |
| 13 | eqid | |- ( ( mulGrp ` S ) |`s X ) = ( ( mulGrp ` S ) |`s X ) |
|
| 14 | 13 | resmhm | |- ( ( F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) /\ X e. ( SubMnd ` ( mulGrp ` S ) ) ) -> ( F |` X ) e. ( ( ( mulGrp ` S ) |`s X ) MndHom ( mulGrp ` T ) ) ) |
| 15 | 11 12 14 | syl2an | |- ( ( F e. ( S RingHom T ) /\ X e. ( SubRing ` S ) ) -> ( F |` X ) e. ( ( ( mulGrp ` S ) |`s X ) MndHom ( mulGrp ` T ) ) ) |
| 16 | rhmrcl1 | |- ( F e. ( S RingHom T ) -> S e. Ring ) |
|
| 17 | 1 9 | mgpress | |- ( ( S e. Ring /\ X e. ( SubRing ` S ) ) -> ( ( mulGrp ` S ) |`s X ) = ( mulGrp ` U ) ) |
| 18 | 16 17 | sylan | |- ( ( F e. ( S RingHom T ) /\ X e. ( SubRing ` S ) ) -> ( ( mulGrp ` S ) |`s X ) = ( mulGrp ` U ) ) |
| 19 | 18 | oveq1d | |- ( ( F e. ( S RingHom T ) /\ X e. ( SubRing ` S ) ) -> ( ( ( mulGrp ` S ) |`s X ) MndHom ( mulGrp ` T ) ) = ( ( mulGrp ` U ) MndHom ( mulGrp ` T ) ) ) |
| 20 | 15 19 | eleqtrd | |- ( ( F e. ( S RingHom T ) /\ X e. ( SubRing ` S ) ) -> ( F |` X ) e. ( ( mulGrp ` U ) MndHom ( mulGrp ` T ) ) ) |
| 21 | 8 20 | jca | |- ( ( F e. ( S RingHom T ) /\ X e. ( SubRing ` S ) ) -> ( ( F |` X ) e. ( U GrpHom T ) /\ ( F |` X ) e. ( ( mulGrp ` U ) MndHom ( mulGrp ` T ) ) ) ) |
| 22 | eqid | |- ( mulGrp ` U ) = ( mulGrp ` U ) |
|
| 23 | 22 10 | isrhm | |- ( ( F |` X ) e. ( U RingHom T ) <-> ( ( U e. Ring /\ T e. Ring ) /\ ( ( F |` X ) e. ( U GrpHom T ) /\ ( F |` X ) e. ( ( mulGrp ` U ) MndHom ( mulGrp ` T ) ) ) ) ) |
| 24 | 4 21 23 | sylanbrc | |- ( ( F e. ( S RingHom T ) /\ X e. ( SubRing ` S ) ) -> ( F |` X ) e. ( U RingHom T ) ) |