This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Diagonal homomorphism into a structure power (Rings). (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsdiagrhm.y | |- Y = ( R ^s I ) |
|
| pwsdiagrhm.b | |- B = ( Base ` R ) |
||
| pwsdiagrhm.f | |- F = ( x e. B |-> ( I X. { x } ) ) |
||
| Assertion | pwsdiagrhm | |- ( ( R e. Ring /\ I e. W ) -> F e. ( R RingHom Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsdiagrhm.y | |- Y = ( R ^s I ) |
|
| 2 | pwsdiagrhm.b | |- B = ( Base ` R ) |
|
| 3 | pwsdiagrhm.f | |- F = ( x e. B |-> ( I X. { x } ) ) |
|
| 4 | simpl | |- ( ( R e. Ring /\ I e. W ) -> R e. Ring ) |
|
| 5 | 1 | pwsring | |- ( ( R e. Ring /\ I e. W ) -> Y e. Ring ) |
| 6 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 7 | 1 2 3 | pwsdiagghm | |- ( ( R e. Grp /\ I e. W ) -> F e. ( R GrpHom Y ) ) |
| 8 | 6 7 | sylan | |- ( ( R e. Ring /\ I e. W ) -> F e. ( R GrpHom Y ) ) |
| 9 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 10 | 9 | ringmgp | |- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
| 11 | eqid | |- ( ( mulGrp ` R ) ^s I ) = ( ( mulGrp ` R ) ^s I ) |
|
| 12 | 9 2 | mgpbas | |- B = ( Base ` ( mulGrp ` R ) ) |
| 13 | 11 12 3 | pwsdiagmhm | |- ( ( ( mulGrp ` R ) e. Mnd /\ I e. W ) -> F e. ( ( mulGrp ` R ) MndHom ( ( mulGrp ` R ) ^s I ) ) ) |
| 14 | 10 13 | sylan | |- ( ( R e. Ring /\ I e. W ) -> F e. ( ( mulGrp ` R ) MndHom ( ( mulGrp ` R ) ^s I ) ) ) |
| 15 | eqidd | |- ( ( R e. Ring /\ I e. W ) -> ( Base ` ( mulGrp ` R ) ) = ( Base ` ( mulGrp ` R ) ) ) |
|
| 16 | eqidd | |- ( ( R e. Ring /\ I e. W ) -> ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( mulGrp ` Y ) ) ) |
|
| 17 | eqid | |- ( mulGrp ` Y ) = ( mulGrp ` Y ) |
|
| 18 | eqid | |- ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( mulGrp ` Y ) ) |
|
| 19 | eqid | |- ( Base ` ( ( mulGrp ` R ) ^s I ) ) = ( Base ` ( ( mulGrp ` R ) ^s I ) ) |
|
| 20 | eqid | |- ( +g ` ( mulGrp ` Y ) ) = ( +g ` ( mulGrp ` Y ) ) |
|
| 21 | eqid | |- ( +g ` ( ( mulGrp ` R ) ^s I ) ) = ( +g ` ( ( mulGrp ` R ) ^s I ) ) |
|
| 22 | 1 9 11 17 18 19 20 21 | pwsmgp | |- ( ( R e. Ring /\ I e. W ) -> ( ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( ( mulGrp ` R ) ^s I ) ) /\ ( +g ` ( mulGrp ` Y ) ) = ( +g ` ( ( mulGrp ` R ) ^s I ) ) ) ) |
| 23 | 22 | simpld | |- ( ( R e. Ring /\ I e. W ) -> ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( ( mulGrp ` R ) ^s I ) ) ) |
| 24 | eqidd | |- ( ( ( R e. Ring /\ I e. W ) /\ ( y e. ( Base ` ( mulGrp ` R ) ) /\ z e. ( Base ` ( mulGrp ` R ) ) ) ) -> ( y ( +g ` ( mulGrp ` R ) ) z ) = ( y ( +g ` ( mulGrp ` R ) ) z ) ) |
|
| 25 | 22 | simprd | |- ( ( R e. Ring /\ I e. W ) -> ( +g ` ( mulGrp ` Y ) ) = ( +g ` ( ( mulGrp ` R ) ^s I ) ) ) |
| 26 | 25 | oveqdr | |- ( ( ( R e. Ring /\ I e. W ) /\ ( y e. ( Base ` ( mulGrp ` Y ) ) /\ z e. ( Base ` ( mulGrp ` Y ) ) ) ) -> ( y ( +g ` ( mulGrp ` Y ) ) z ) = ( y ( +g ` ( ( mulGrp ` R ) ^s I ) ) z ) ) |
| 27 | 15 16 15 23 24 26 | mhmpropd | |- ( ( R e. Ring /\ I e. W ) -> ( ( mulGrp ` R ) MndHom ( mulGrp ` Y ) ) = ( ( mulGrp ` R ) MndHom ( ( mulGrp ` R ) ^s I ) ) ) |
| 28 | 14 27 | eleqtrrd | |- ( ( R e. Ring /\ I e. W ) -> F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` Y ) ) ) |
| 29 | 8 28 | jca | |- ( ( R e. Ring /\ I e. W ) -> ( F e. ( R GrpHom Y ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` Y ) ) ) ) |
| 30 | 9 17 | isrhm | |- ( F e. ( R RingHom Y ) <-> ( ( R e. Ring /\ Y e. Ring ) /\ ( F e. ( R GrpHom Y ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` Y ) ) ) ) ) |
| 31 | 4 5 29 30 | syl21anbrc | |- ( ( R e. Ring /\ I e. W ) -> F e. ( R RingHom Y ) ) |