This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the base set of a structure product. (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsbas.y | |- Y = ( R ^s I ) |
|
| pwsbas.f | |- B = ( Base ` R ) |
||
| pwselbas.v | |- V = ( Base ` Y ) |
||
| Assertion | pwselbasb | |- ( ( R e. W /\ I e. Z ) -> ( X e. V <-> X : I --> B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsbas.y | |- Y = ( R ^s I ) |
|
| 2 | pwsbas.f | |- B = ( Base ` R ) |
|
| 3 | pwselbas.v | |- V = ( Base ` Y ) |
|
| 4 | 1 2 | pwsbas | |- ( ( R e. W /\ I e. Z ) -> ( B ^m I ) = ( Base ` Y ) ) |
| 5 | 4 3 | eqtr4di | |- ( ( R e. W /\ I e. Z ) -> ( B ^m I ) = V ) |
| 6 | 5 | eleq2d | |- ( ( R e. W /\ I e. Z ) -> ( X e. ( B ^m I ) <-> X e. V ) ) |
| 7 | 2 | fvexi | |- B e. _V |
| 8 | elmapg | |- ( ( B e. _V /\ I e. Z ) -> ( X e. ( B ^m I ) <-> X : I --> B ) ) |
|
| 9 | 7 8 | mpan | |- ( I e. Z -> ( X e. ( B ^m I ) <-> X : I --> B ) ) |
| 10 | 9 | adantl | |- ( ( R e. W /\ I e. Z ) -> ( X e. ( B ^m I ) <-> X : I --> B ) ) |
| 11 | 6 10 | bitr3d | |- ( ( R e. W /\ I e. Z ) -> ( X e. V <-> X : I --> B ) ) |