This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Univariate polynomial evaluation maps scalars to constant functions. (Contributed by AV, 8-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1sca.q | |- Q = ( S evalSub1 R ) |
|
| evls1sca.w | |- W = ( Poly1 ` U ) |
||
| evls1sca.u | |- U = ( S |`s R ) |
||
| evls1sca.b | |- B = ( Base ` S ) |
||
| evls1sca.a | |- A = ( algSc ` W ) |
||
| evls1sca.s | |- ( ph -> S e. CRing ) |
||
| evls1sca.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| evls1sca.x | |- ( ph -> X e. R ) |
||
| Assertion | evls1sca | |- ( ph -> ( Q ` ( A ` X ) ) = ( B X. { X } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1sca.q | |- Q = ( S evalSub1 R ) |
|
| 2 | evls1sca.w | |- W = ( Poly1 ` U ) |
|
| 3 | evls1sca.u | |- U = ( S |`s R ) |
|
| 4 | evls1sca.b | |- B = ( Base ` S ) |
|
| 5 | evls1sca.a | |- A = ( algSc ` W ) |
|
| 6 | evls1sca.s | |- ( ph -> S e. CRing ) |
|
| 7 | evls1sca.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 8 | evls1sca.x | |- ( ph -> X e. R ) |
|
| 9 | 1on | |- 1o e. On |
|
| 10 | eqid | |- ( ( 1o evalSub S ) ` R ) = ( ( 1o evalSub S ) ` R ) |
|
| 11 | eqid | |- ( 1o mPoly U ) = ( 1o mPoly U ) |
|
| 12 | eqid | |- ( S ^s ( B ^m 1o ) ) = ( S ^s ( B ^m 1o ) ) |
|
| 13 | 10 11 3 12 4 | evlsrhm | |- ( ( 1o e. On /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> ( ( 1o evalSub S ) ` R ) e. ( ( 1o mPoly U ) RingHom ( S ^s ( B ^m 1o ) ) ) ) |
| 14 | 9 6 7 13 | mp3an2i | |- ( ph -> ( ( 1o evalSub S ) ` R ) e. ( ( 1o mPoly U ) RingHom ( S ^s ( B ^m 1o ) ) ) ) |
| 15 | eqid | |- ( Base ` ( 1o mPoly U ) ) = ( Base ` ( 1o mPoly U ) ) |
|
| 16 | eqid | |- ( Base ` ( S ^s ( B ^m 1o ) ) ) = ( Base ` ( S ^s ( B ^m 1o ) ) ) |
|
| 17 | 15 16 | rhmf | |- ( ( ( 1o evalSub S ) ` R ) e. ( ( 1o mPoly U ) RingHom ( S ^s ( B ^m 1o ) ) ) -> ( ( 1o evalSub S ) ` R ) : ( Base ` ( 1o mPoly U ) ) --> ( Base ` ( S ^s ( B ^m 1o ) ) ) ) |
| 18 | 14 17 | syl | |- ( ph -> ( ( 1o evalSub S ) ` R ) : ( Base ` ( 1o mPoly U ) ) --> ( Base ` ( S ^s ( B ^m 1o ) ) ) ) |
| 19 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 20 | 3 | subrgring | |- ( R e. ( SubRing ` S ) -> U e. Ring ) |
| 21 | 7 20 | syl | |- ( ph -> U e. Ring ) |
| 22 | 2 | ply1ring | |- ( U e. Ring -> W e. Ring ) |
| 23 | 21 22 | syl | |- ( ph -> W e. Ring ) |
| 24 | 2 | ply1lmod | |- ( U e. Ring -> W e. LMod ) |
| 25 | 21 24 | syl | |- ( ph -> W e. LMod ) |
| 26 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 27 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 28 | 5 19 23 25 26 27 | asclf | |- ( ph -> A : ( Base ` ( Scalar ` W ) ) --> ( Base ` W ) ) |
| 29 | 4 | subrgss | |- ( R e. ( SubRing ` S ) -> R C_ B ) |
| 30 | 7 29 | syl | |- ( ph -> R C_ B ) |
| 31 | 3 4 | ressbas2 | |- ( R C_ B -> R = ( Base ` U ) ) |
| 32 | 30 31 | syl | |- ( ph -> R = ( Base ` U ) ) |
| 33 | 2 | ply1sca | |- ( U e. Ring -> U = ( Scalar ` W ) ) |
| 34 | 21 33 | syl | |- ( ph -> U = ( Scalar ` W ) ) |
| 35 | 34 | fveq2d | |- ( ph -> ( Base ` U ) = ( Base ` ( Scalar ` W ) ) ) |
| 36 | 32 35 | eqtrd | |- ( ph -> R = ( Base ` ( Scalar ` W ) ) ) |
| 37 | 2 27 | ply1bas | |- ( Base ` W ) = ( Base ` ( 1o mPoly U ) ) |
| 38 | 37 | a1i | |- ( ph -> ( Base ` W ) = ( Base ` ( 1o mPoly U ) ) ) |
| 39 | 38 | eqcomd | |- ( ph -> ( Base ` ( 1o mPoly U ) ) = ( Base ` W ) ) |
| 40 | 36 39 | feq23d | |- ( ph -> ( A : R --> ( Base ` ( 1o mPoly U ) ) <-> A : ( Base ` ( Scalar ` W ) ) --> ( Base ` W ) ) ) |
| 41 | 28 40 | mpbird | |- ( ph -> A : R --> ( Base ` ( 1o mPoly U ) ) ) |
| 42 | 41 8 | ffvelcdmd | |- ( ph -> ( A ` X ) e. ( Base ` ( 1o mPoly U ) ) ) |
| 43 | fvco3 | |- ( ( ( ( 1o evalSub S ) ` R ) : ( Base ` ( 1o mPoly U ) ) --> ( Base ` ( S ^s ( B ^m 1o ) ) ) /\ ( A ` X ) e. ( Base ` ( 1o mPoly U ) ) ) -> ( ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) o. ( ( 1o evalSub S ) ` R ) ) ` ( A ` X ) ) = ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) ` ( ( ( 1o evalSub S ) ` R ) ` ( A ` X ) ) ) ) |
|
| 44 | 18 42 43 | syl2anc | |- ( ph -> ( ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) o. ( ( 1o evalSub S ) ` R ) ) ` ( A ` X ) ) = ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) ` ( ( ( 1o evalSub S ) ` R ) ` ( A ` X ) ) ) ) |
| 45 | 5 | a1i | |- ( ph -> A = ( algSc ` W ) ) |
| 46 | eqid | |- ( algSc ` W ) = ( algSc ` W ) |
|
| 47 | 2 46 | ply1ascl | |- ( algSc ` W ) = ( algSc ` ( 1o mPoly U ) ) |
| 48 | 45 47 | eqtrdi | |- ( ph -> A = ( algSc ` ( 1o mPoly U ) ) ) |
| 49 | 48 | fveq1d | |- ( ph -> ( A ` X ) = ( ( algSc ` ( 1o mPoly U ) ) ` X ) ) |
| 50 | 49 | fveq2d | |- ( ph -> ( ( ( 1o evalSub S ) ` R ) ` ( A ` X ) ) = ( ( ( 1o evalSub S ) ` R ) ` ( ( algSc ` ( 1o mPoly U ) ) ` X ) ) ) |
| 51 | eqid | |- ( algSc ` ( 1o mPoly U ) ) = ( algSc ` ( 1o mPoly U ) ) |
|
| 52 | 9 | a1i | |- ( ph -> 1o e. On ) |
| 53 | 10 11 3 4 51 52 6 7 8 | evlssca | |- ( ph -> ( ( ( 1o evalSub S ) ` R ) ` ( ( algSc ` ( 1o mPoly U ) ) ` X ) ) = ( ( B ^m 1o ) X. { X } ) ) |
| 54 | 50 53 | eqtrd | |- ( ph -> ( ( ( 1o evalSub S ) ` R ) ` ( A ` X ) ) = ( ( B ^m 1o ) X. { X } ) ) |
| 55 | 54 | fveq2d | |- ( ph -> ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) ` ( ( ( 1o evalSub S ) ` R ) ` ( A ` X ) ) ) = ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) ` ( ( B ^m 1o ) X. { X } ) ) ) |
| 56 | eqidd | |- ( ph -> ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) = ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) ) |
|
| 57 | coeq1 | |- ( x = ( ( B ^m 1o ) X. { X } ) -> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) = ( ( ( B ^m 1o ) X. { X } ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
|
| 58 | 57 | adantl | |- ( ( ph /\ x = ( ( B ^m 1o ) X. { X } ) ) -> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) = ( ( ( B ^m 1o ) X. { X } ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
| 59 | 30 8 | sseldd | |- ( ph -> X e. B ) |
| 60 | fconst6g | |- ( X e. B -> ( ( B ^m 1o ) X. { X } ) : ( B ^m 1o ) --> B ) |
|
| 61 | 59 60 | syl | |- ( ph -> ( ( B ^m 1o ) X. { X } ) : ( B ^m 1o ) --> B ) |
| 62 | 4 | fvexi | |- B e. _V |
| 63 | 62 | a1i | |- ( ph -> B e. _V ) |
| 64 | ovex | |- ( B ^m 1o ) e. _V |
|
| 65 | 64 | a1i | |- ( ph -> ( B ^m 1o ) e. _V ) |
| 66 | 63 65 | elmapd | |- ( ph -> ( ( ( B ^m 1o ) X. { X } ) e. ( B ^m ( B ^m 1o ) ) <-> ( ( B ^m 1o ) X. { X } ) : ( B ^m 1o ) --> B ) ) |
| 67 | 61 66 | mpbird | |- ( ph -> ( ( B ^m 1o ) X. { X } ) e. ( B ^m ( B ^m 1o ) ) ) |
| 68 | snex | |- { X } e. _V |
|
| 69 | 64 68 | xpex | |- ( ( B ^m 1o ) X. { X } ) e. _V |
| 70 | 69 | a1i | |- ( ph -> ( ( B ^m 1o ) X. { X } ) e. _V ) |
| 71 | 63 | mptexd | |- ( ph -> ( y e. B |-> ( 1o X. { y } ) ) e. _V ) |
| 72 | coexg | |- ( ( ( ( B ^m 1o ) X. { X } ) e. _V /\ ( y e. B |-> ( 1o X. { y } ) ) e. _V ) -> ( ( ( B ^m 1o ) X. { X } ) o. ( y e. B |-> ( 1o X. { y } ) ) ) e. _V ) |
|
| 73 | 70 71 72 | syl2anc | |- ( ph -> ( ( ( B ^m 1o ) X. { X } ) o. ( y e. B |-> ( 1o X. { y } ) ) ) e. _V ) |
| 74 | 56 58 67 73 | fvmptd | |- ( ph -> ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) ` ( ( B ^m 1o ) X. { X } ) ) = ( ( ( B ^m 1o ) X. { X } ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
| 75 | fconst6g | |- ( y e. B -> ( 1o X. { y } ) : 1o --> B ) |
|
| 76 | 75 | adantl | |- ( ( ph /\ y e. B ) -> ( 1o X. { y } ) : 1o --> B ) |
| 77 | 62 9 | pm3.2i | |- ( B e. _V /\ 1o e. On ) |
| 78 | 77 | a1i | |- ( ( ph /\ y e. B ) -> ( B e. _V /\ 1o e. On ) ) |
| 79 | elmapg | |- ( ( B e. _V /\ 1o e. On ) -> ( ( 1o X. { y } ) e. ( B ^m 1o ) <-> ( 1o X. { y } ) : 1o --> B ) ) |
|
| 80 | 78 79 | syl | |- ( ( ph /\ y e. B ) -> ( ( 1o X. { y } ) e. ( B ^m 1o ) <-> ( 1o X. { y } ) : 1o --> B ) ) |
| 81 | 76 80 | mpbird | |- ( ( ph /\ y e. B ) -> ( 1o X. { y } ) e. ( B ^m 1o ) ) |
| 82 | eqidd | |- ( ph -> ( y e. B |-> ( 1o X. { y } ) ) = ( y e. B |-> ( 1o X. { y } ) ) ) |
|
| 83 | fconstmpt | |- ( ( B ^m 1o ) X. { X } ) = ( z e. ( B ^m 1o ) |-> X ) |
|
| 84 | 83 | a1i | |- ( ph -> ( ( B ^m 1o ) X. { X } ) = ( z e. ( B ^m 1o ) |-> X ) ) |
| 85 | eqidd | |- ( z = ( 1o X. { y } ) -> X = X ) |
|
| 86 | 81 82 84 85 | fmptco | |- ( ph -> ( ( ( B ^m 1o ) X. { X } ) o. ( y e. B |-> ( 1o X. { y } ) ) ) = ( y e. B |-> X ) ) |
| 87 | 74 86 | eqtrd | |- ( ph -> ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) ` ( ( B ^m 1o ) X. { X } ) ) = ( y e. B |-> X ) ) |
| 88 | 44 55 87 | 3eqtrd | |- ( ph -> ( ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) o. ( ( 1o evalSub S ) ` R ) ) ` ( A ` X ) ) = ( y e. B |-> X ) ) |
| 89 | elpwg | |- ( R e. ( SubRing ` S ) -> ( R e. ~P B <-> R C_ B ) ) |
|
| 90 | 29 89 | mpbird | |- ( R e. ( SubRing ` S ) -> R e. ~P B ) |
| 91 | 7 90 | syl | |- ( ph -> R e. ~P B ) |
| 92 | eqid | |- ( 1o evalSub S ) = ( 1o evalSub S ) |
|
| 93 | 1 92 4 | evls1fval | |- ( ( S e. CRing /\ R e. ~P B ) -> Q = ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) o. ( ( 1o evalSub S ) ` R ) ) ) |
| 94 | 6 91 93 | syl2anc | |- ( ph -> Q = ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) o. ( ( 1o evalSub S ) ` R ) ) ) |
| 95 | 94 | fveq1d | |- ( ph -> ( Q ` ( A ` X ) ) = ( ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) o. ( ( 1o evalSub S ) ` R ) ) ` ( A ` X ) ) ) |
| 96 | fconstmpt | |- ( B X. { X } ) = ( y e. B |-> X ) |
|
| 97 | 96 | a1i | |- ( ph -> ( B X. { X } ) = ( y e. B |-> X ) ) |
| 98 | 88 95 97 | 3eqtr4d | |- ( ph -> ( Q ` ( A ` X ) ) = ( B X. { X } ) ) |