This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Univariate polynomial evaluation maps scalars to constant functions. (Contributed by AV, 8-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1sca.q | ⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) | |
| evls1sca.w | ⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) | ||
| evls1sca.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| evls1sca.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| evls1sca.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | ||
| evls1sca.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evls1sca.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| evls1sca.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑅 ) | ||
| Assertion | evls1sca | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( 𝐵 × { 𝑋 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1sca.q | ⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) | |
| 2 | evls1sca.w | ⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) | |
| 3 | evls1sca.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 4 | evls1sca.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 5 | evls1sca.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| 6 | evls1sca.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 7 | evls1sca.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 8 | evls1sca.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑅 ) | |
| 9 | 1on | ⊢ 1o ∈ On | |
| 10 | eqid | ⊢ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) = ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) | |
| 11 | eqid | ⊢ ( 1o mPoly 𝑈 ) = ( 1o mPoly 𝑈 ) | |
| 12 | eqid | ⊢ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) = ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) | |
| 13 | 10 11 3 12 4 | evlsrhm | ⊢ ( ( 1o ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( ( 1o mPoly 𝑈 ) RingHom ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 14 | 9 6 7 13 | mp3an2i | ⊢ ( 𝜑 → ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( ( 1o mPoly 𝑈 ) RingHom ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 15 | eqid | ⊢ ( Base ‘ ( 1o mPoly 𝑈 ) ) = ( Base ‘ ( 1o mPoly 𝑈 ) ) | |
| 16 | eqid | ⊢ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) = ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) | |
| 17 | 15 16 | rhmf | ⊢ ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( ( 1o mPoly 𝑈 ) RingHom ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) → ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) : ( Base ‘ ( 1o mPoly 𝑈 ) ) ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 18 | 14 17 | syl | ⊢ ( 𝜑 → ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) : ( Base ‘ ( 1o mPoly 𝑈 ) ) ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 19 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 20 | 3 | subrgring | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring ) |
| 21 | 7 20 | syl | ⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
| 22 | 2 | ply1ring | ⊢ ( 𝑈 ∈ Ring → 𝑊 ∈ Ring ) |
| 23 | 21 22 | syl | ⊢ ( 𝜑 → 𝑊 ∈ Ring ) |
| 24 | 2 | ply1lmod | ⊢ ( 𝑈 ∈ Ring → 𝑊 ∈ LMod ) |
| 25 | 21 24 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 26 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 27 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 28 | 5 19 23 25 26 27 | asclf | ⊢ ( 𝜑 → 𝐴 : ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝑊 ) ) |
| 29 | 4 | subrgss | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐵 ) |
| 30 | 7 29 | syl | ⊢ ( 𝜑 → 𝑅 ⊆ 𝐵 ) |
| 31 | 3 4 | ressbas2 | ⊢ ( 𝑅 ⊆ 𝐵 → 𝑅 = ( Base ‘ 𝑈 ) ) |
| 32 | 30 31 | syl | ⊢ ( 𝜑 → 𝑅 = ( Base ‘ 𝑈 ) ) |
| 33 | 2 | ply1sca | ⊢ ( 𝑈 ∈ Ring → 𝑈 = ( Scalar ‘ 𝑊 ) ) |
| 34 | 21 33 | syl | ⊢ ( 𝜑 → 𝑈 = ( Scalar ‘ 𝑊 ) ) |
| 35 | 34 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝑈 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 36 | 32 35 | eqtrd | ⊢ ( 𝜑 → 𝑅 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 37 | 2 27 | ply1bas | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ ( 1o mPoly 𝑈 ) ) |
| 38 | 37 | a1i | ⊢ ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ ( 1o mPoly 𝑈 ) ) ) |
| 39 | 38 | eqcomd | ⊢ ( 𝜑 → ( Base ‘ ( 1o mPoly 𝑈 ) ) = ( Base ‘ 𝑊 ) ) |
| 40 | 36 39 | feq23d | ⊢ ( 𝜑 → ( 𝐴 : 𝑅 ⟶ ( Base ‘ ( 1o mPoly 𝑈 ) ) ↔ 𝐴 : ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝑊 ) ) ) |
| 41 | 28 40 | mpbird | ⊢ ( 𝜑 → 𝐴 : 𝑅 ⟶ ( Base ‘ ( 1o mPoly 𝑈 ) ) ) |
| 42 | 41 8 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) ∈ ( Base ‘ ( 1o mPoly 𝑈 ) ) ) |
| 43 | fvco3 | ⊢ ( ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) : ( Base ‘ ( 1o mPoly 𝑈 ) ) ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ∧ ( 𝐴 ‘ 𝑋 ) ∈ ( Base ‘ ( 1o mPoly 𝑈 ) ) ) → ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) ) | |
| 44 | 18 42 43 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) ) |
| 45 | 5 | a1i | ⊢ ( 𝜑 → 𝐴 = ( algSc ‘ 𝑊 ) ) |
| 46 | eqid | ⊢ ( algSc ‘ 𝑊 ) = ( algSc ‘ 𝑊 ) | |
| 47 | 2 46 | ply1ascl | ⊢ ( algSc ‘ 𝑊 ) = ( algSc ‘ ( 1o mPoly 𝑈 ) ) |
| 48 | 45 47 | eqtrdi | ⊢ ( 𝜑 → 𝐴 = ( algSc ‘ ( 1o mPoly 𝑈 ) ) ) |
| 49 | 48 | fveq1d | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) = ( ( algSc ‘ ( 1o mPoly 𝑈 ) ) ‘ 𝑋 ) ) |
| 50 | 49 | fveq2d | ⊢ ( 𝜑 → ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( ( algSc ‘ ( 1o mPoly 𝑈 ) ) ‘ 𝑋 ) ) ) |
| 51 | eqid | ⊢ ( algSc ‘ ( 1o mPoly 𝑈 ) ) = ( algSc ‘ ( 1o mPoly 𝑈 ) ) | |
| 52 | 9 | a1i | ⊢ ( 𝜑 → 1o ∈ On ) |
| 53 | 10 11 3 4 51 52 6 7 8 | evlssca | ⊢ ( 𝜑 → ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( ( algSc ‘ ( 1o mPoly 𝑈 ) ) ‘ 𝑋 ) ) = ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ) |
| 54 | 50 53 | eqtrd | ⊢ ( 𝜑 → ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ) |
| 55 | 54 | fveq2d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ) ) |
| 56 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) = ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ) | |
| 57 | coeq1 | ⊢ ( 𝑥 = ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) → ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) = ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) | |
| 58 | 57 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 = ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ) → ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) = ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 59 | 30 8 | sseldd | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 60 | fconst6g | ⊢ ( 𝑋 ∈ 𝐵 → ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) : ( 𝐵 ↑m 1o ) ⟶ 𝐵 ) | |
| 61 | 59 60 | syl | ⊢ ( 𝜑 → ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) : ( 𝐵 ↑m 1o ) ⟶ 𝐵 ) |
| 62 | 4 | fvexi | ⊢ 𝐵 ∈ V |
| 63 | 62 | a1i | ⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 64 | ovex | ⊢ ( 𝐵 ↑m 1o ) ∈ V | |
| 65 | 64 | a1i | ⊢ ( 𝜑 → ( 𝐵 ↑m 1o ) ∈ V ) |
| 66 | 63 65 | elmapd | ⊢ ( 𝜑 → ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↔ ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) : ( 𝐵 ↑m 1o ) ⟶ 𝐵 ) ) |
| 67 | 61 66 | mpbird | ⊢ ( 𝜑 → ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ) |
| 68 | snex | ⊢ { 𝑋 } ∈ V | |
| 69 | 64 68 | xpex | ⊢ ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∈ V |
| 70 | 69 | a1i | ⊢ ( 𝜑 → ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∈ V ) |
| 71 | 63 | mptexd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ∈ V ) |
| 72 | coexg | ⊢ ( ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∈ V ∧ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ∈ V ) → ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ∈ V ) | |
| 73 | 70 71 72 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ∈ V ) |
| 74 | 56 58 67 73 | fvmptd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ) = ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 75 | fconst6g | ⊢ ( 𝑦 ∈ 𝐵 → ( 1o × { 𝑦 } ) : 1o ⟶ 𝐵 ) | |
| 76 | 75 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 1o × { 𝑦 } ) : 1o ⟶ 𝐵 ) |
| 77 | 62 9 | pm3.2i | ⊢ ( 𝐵 ∈ V ∧ 1o ∈ On ) |
| 78 | 77 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐵 ∈ V ∧ 1o ∈ On ) ) |
| 79 | elmapg | ⊢ ( ( 𝐵 ∈ V ∧ 1o ∈ On ) → ( ( 1o × { 𝑦 } ) ∈ ( 𝐵 ↑m 1o ) ↔ ( 1o × { 𝑦 } ) : 1o ⟶ 𝐵 ) ) | |
| 80 | 78 79 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 1o × { 𝑦 } ) ∈ ( 𝐵 ↑m 1o ) ↔ ( 1o × { 𝑦 } ) : 1o ⟶ 𝐵 ) ) |
| 81 | 76 80 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 1o × { 𝑦 } ) ∈ ( 𝐵 ↑m 1o ) ) |
| 82 | eqidd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) | |
| 83 | fconstmpt | ⊢ ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) = ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ 𝑋 ) | |
| 84 | 83 | a1i | ⊢ ( 𝜑 → ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) = ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ 𝑋 ) ) |
| 85 | eqidd | ⊢ ( 𝑧 = ( 1o × { 𝑦 } ) → 𝑋 = 𝑋 ) | |
| 86 | 81 82 84 85 | fmptco | ⊢ ( 𝜑 → ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) = ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) ) |
| 87 | 74 86 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ) = ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) ) |
| 88 | 44 55 87 | 3eqtrd | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) = ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) ) |
| 89 | elpwg | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵 ) ) | |
| 90 | 29 89 | mpbird | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ∈ 𝒫 𝐵 ) |
| 91 | 7 90 | syl | ⊢ ( 𝜑 → 𝑅 ∈ 𝒫 𝐵 ) |
| 92 | eqid | ⊢ ( 1o evalSub 𝑆 ) = ( 1o evalSub 𝑆 ) | |
| 93 | 1 92 4 | evls1fval | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵 ) → 𝑄 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ) |
| 94 | 6 91 93 | syl2anc | ⊢ ( 𝜑 → 𝑄 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ) |
| 95 | 94 | fveq1d | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) |
| 96 | fconstmpt | ⊢ ( 𝐵 × { 𝑋 } ) = ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) | |
| 97 | 96 | a1i | ⊢ ( 𝜑 → ( 𝐵 × { 𝑋 } ) = ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) ) |
| 98 | 88 95 97 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( 𝐵 × { 𝑋 } ) ) |