This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The univariate polynomial ring inherits the multivariate ring's scalar function. (Contributed by Stefan O'Rear, 28-Mar-2015) (Proof shortened by Fan Zheng, 26-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1ascl.p | |- P = ( Poly1 ` R ) |
|
| ply1ascl.a | |- A = ( algSc ` P ) |
||
| Assertion | ply1ascl | |- A = ( algSc ` ( 1o mPoly R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1ascl.p | |- P = ( Poly1 ` R ) |
|
| 2 | ply1ascl.a | |- A = ( algSc ` P ) |
|
| 3 | eqid | |- ( Scalar ` P ) = ( Scalar ` P ) |
|
| 4 | eqid | |- ( Scalar ` ( 1o mPoly R ) ) = ( Scalar ` ( 1o mPoly R ) ) |
|
| 5 | 1 | ply1sca | |- ( R e. _V -> R = ( Scalar ` P ) ) |
| 6 | 5 | fveq2d | |- ( R e. _V -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
| 7 | eqid | |- ( 1o mPoly R ) = ( 1o mPoly R ) |
|
| 8 | 1on | |- 1o e. On |
|
| 9 | 8 | a1i | |- ( R e. _V -> 1o e. On ) |
| 10 | id | |- ( R e. _V -> R e. _V ) |
|
| 11 | 7 9 10 | mplsca | |- ( R e. _V -> R = ( Scalar ` ( 1o mPoly R ) ) ) |
| 12 | 11 | fveq2d | |- ( R e. _V -> ( Base ` R ) = ( Base ` ( Scalar ` ( 1o mPoly R ) ) ) ) |
| 13 | eqid | |- ( .s ` P ) = ( .s ` P ) |
|
| 14 | 1 7 13 | ply1vsca | |- ( .s ` P ) = ( .s ` ( 1o mPoly R ) ) |
| 15 | 14 | a1i | |- ( R e. _V -> ( .s ` P ) = ( .s ` ( 1o mPoly R ) ) ) |
| 16 | 15 | oveqdr | |- ( ( R e. _V /\ ( x e. ( Base ` R ) /\ y e. _V ) ) -> ( x ( .s ` P ) y ) = ( x ( .s ` ( 1o mPoly R ) ) y ) ) |
| 17 | eqid | |- ( 1r ` P ) = ( 1r ` P ) |
|
| 18 | 7 1 17 | ply1mpl1 | |- ( 1r ` P ) = ( 1r ` ( 1o mPoly R ) ) |
| 19 | 18 | a1i | |- ( R e. _V -> ( 1r ` P ) = ( 1r ` ( 1o mPoly R ) ) ) |
| 20 | fvexd | |- ( R e. _V -> ( 1r ` P ) e. _V ) |
|
| 21 | 3 4 6 12 16 19 20 | asclpropd | |- ( R e. _V -> ( algSc ` P ) = ( algSc ` ( 1o mPoly R ) ) ) |
| 22 | fvprc | |- ( -. R e. _V -> ( Poly1 ` R ) = (/) ) |
|
| 23 | 1 22 | eqtrid | |- ( -. R e. _V -> P = (/) ) |
| 24 | reldmmpl | |- Rel dom mPoly |
|
| 25 | 24 | ovprc2 | |- ( -. R e. _V -> ( 1o mPoly R ) = (/) ) |
| 26 | 23 25 | eqtr4d | |- ( -. R e. _V -> P = ( 1o mPoly R ) ) |
| 27 | 26 | fveq2d | |- ( -. R e. _V -> ( algSc ` P ) = ( algSc ` ( 1o mPoly R ) ) ) |
| 28 | 21 27 | pm2.61i | |- ( algSc ` P ) = ( algSc ` ( 1o mPoly R ) ) |
| 29 | 2 28 | eqtri | |- A = ( algSc ` ( 1o mPoly R ) ) |