This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function F mapping polynomials p to their subring evaluation at a given point A takes all values in the subring S . (Contributed by Thierry Arnoux, 25-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1maprhm.q | |- O = ( R evalSub1 S ) |
|
| evls1maprhm.p | |- P = ( Poly1 ` ( R |`s S ) ) |
||
| evls1maprhm.b | |- B = ( Base ` R ) |
||
| evls1maprhm.u | |- U = ( Base ` P ) |
||
| evls1maprhm.r | |- ( ph -> R e. CRing ) |
||
| evls1maprhm.s | |- ( ph -> S e. ( SubRing ` R ) ) |
||
| evls1maprhm.y | |- ( ph -> X e. B ) |
||
| evls1maprhm.f | |- F = ( p e. U |-> ( ( O ` p ) ` X ) ) |
||
| Assertion | evls1maprnss | |- ( ph -> S C_ ran F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1maprhm.q | |- O = ( R evalSub1 S ) |
|
| 2 | evls1maprhm.p | |- P = ( Poly1 ` ( R |`s S ) ) |
|
| 3 | evls1maprhm.b | |- B = ( Base ` R ) |
|
| 4 | evls1maprhm.u | |- U = ( Base ` P ) |
|
| 5 | evls1maprhm.r | |- ( ph -> R e. CRing ) |
|
| 6 | evls1maprhm.s | |- ( ph -> S e. ( SubRing ` R ) ) |
|
| 7 | evls1maprhm.y | |- ( ph -> X e. B ) |
|
| 8 | evls1maprhm.f | |- F = ( p e. U |-> ( ( O ` p ) ` X ) ) |
|
| 9 | eqid | |- ( Poly1 ` R ) = ( Poly1 ` R ) |
|
| 10 | eqid | |- ( algSc ` ( Poly1 ` R ) ) = ( algSc ` ( Poly1 ` R ) ) |
|
| 11 | eqid | |- ( R |`s S ) = ( R |`s S ) |
|
| 12 | eqid | |- ( algSc ` P ) = ( algSc ` P ) |
|
| 13 | 9 10 11 2 6 12 | subrg1ascl | |- ( ph -> ( algSc ` P ) = ( ( algSc ` ( Poly1 ` R ) ) |` S ) ) |
| 14 | 13 | adantr | |- ( ( ph /\ y e. S ) -> ( algSc ` P ) = ( ( algSc ` ( Poly1 ` R ) ) |` S ) ) |
| 15 | 14 | fveq1d | |- ( ( ph /\ y e. S ) -> ( ( algSc ` P ) ` y ) = ( ( ( algSc ` ( Poly1 ` R ) ) |` S ) ` y ) ) |
| 16 | simpr | |- ( ( ph /\ y e. S ) -> y e. S ) |
|
| 17 | 16 | fvresd | |- ( ( ph /\ y e. S ) -> ( ( ( algSc ` ( Poly1 ` R ) ) |` S ) ` y ) = ( ( algSc ` ( Poly1 ` R ) ) ` y ) ) |
| 18 | 15 17 | eqtrd | |- ( ( ph /\ y e. S ) -> ( ( algSc ` P ) ` y ) = ( ( algSc ` ( Poly1 ` R ) ) ` y ) ) |
| 19 | 6 | adantr | |- ( ( ph /\ y e. S ) -> S e. ( SubRing ` R ) ) |
| 20 | 10 11 9 2 4 19 16 | asclply1subcl | |- ( ( ph /\ y e. S ) -> ( ( algSc ` ( Poly1 ` R ) ) ` y ) e. U ) |
| 21 | 18 20 | eqeltrd | |- ( ( ph /\ y e. S ) -> ( ( algSc ` P ) ` y ) e. U ) |
| 22 | fveq2 | |- ( p = ( ( algSc ` P ) ` y ) -> ( O ` p ) = ( O ` ( ( algSc ` P ) ` y ) ) ) |
|
| 23 | 22 | fveq1d | |- ( p = ( ( algSc ` P ) ` y ) -> ( ( O ` p ) ` X ) = ( ( O ` ( ( algSc ` P ) ` y ) ) ` X ) ) |
| 24 | 23 | eqeq2d | |- ( p = ( ( algSc ` P ) ` y ) -> ( y = ( ( O ` p ) ` X ) <-> y = ( ( O ` ( ( algSc ` P ) ` y ) ) ` X ) ) ) |
| 25 | 24 | adantl | |- ( ( ( ph /\ y e. S ) /\ p = ( ( algSc ` P ) ` y ) ) -> ( y = ( ( O ` p ) ` X ) <-> y = ( ( O ` ( ( algSc ` P ) ` y ) ) ` X ) ) ) |
| 26 | 5 | adantr | |- ( ( ph /\ y e. S ) -> R e. CRing ) |
| 27 | 1 2 11 3 12 26 19 16 | evls1sca | |- ( ( ph /\ y e. S ) -> ( O ` ( ( algSc ` P ) ` y ) ) = ( B X. { y } ) ) |
| 28 | 27 | fveq1d | |- ( ( ph /\ y e. S ) -> ( ( O ` ( ( algSc ` P ) ` y ) ) ` X ) = ( ( B X. { y } ) ` X ) ) |
| 29 | 7 | adantr | |- ( ( ph /\ y e. S ) -> X e. B ) |
| 30 | vex | |- y e. _V |
|
| 31 | 30 | fvconst2 | |- ( X e. B -> ( ( B X. { y } ) ` X ) = y ) |
| 32 | 29 31 | syl | |- ( ( ph /\ y e. S ) -> ( ( B X. { y } ) ` X ) = y ) |
| 33 | 28 32 | eqtr2d | |- ( ( ph /\ y e. S ) -> y = ( ( O ` ( ( algSc ` P ) ` y ) ) ` X ) ) |
| 34 | 21 25 33 | rspcedvd | |- ( ( ph /\ y e. S ) -> E. p e. U y = ( ( O ` p ) ` X ) ) |
| 35 | 8 34 16 | elrnmptd | |- ( ( ph /\ y e. S ) -> y e. ran F ) |
| 36 | 35 | ex | |- ( ph -> ( y e. S -> y e. ran F ) ) |
| 37 | 36 | ssrdv | |- ( ph -> S C_ ran F ) |