This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subring algebra is a left module. (Contributed by Stefan O'Rear, 27-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sralmod.a | |- A = ( ( subringAlg ` W ) ` S ) |
|
| Assertion | sralmod | |- ( S e. ( SubRing ` W ) -> A e. LMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sralmod.a | |- A = ( ( subringAlg ` W ) ` S ) |
|
| 2 | 1 | a1i | |- ( S e. ( SubRing ` W ) -> A = ( ( subringAlg ` W ) ` S ) ) |
| 3 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 4 | 3 | subrgss | |- ( S e. ( SubRing ` W ) -> S C_ ( Base ` W ) ) |
| 5 | 2 4 | srabase | |- ( S e. ( SubRing ` W ) -> ( Base ` W ) = ( Base ` A ) ) |
| 6 | 2 4 | sraaddg | |- ( S e. ( SubRing ` W ) -> ( +g ` W ) = ( +g ` A ) ) |
| 7 | 2 4 | srasca | |- ( S e. ( SubRing ` W ) -> ( W |`s S ) = ( Scalar ` A ) ) |
| 8 | 2 4 | sravsca | |- ( S e. ( SubRing ` W ) -> ( .r ` W ) = ( .s ` A ) ) |
| 9 | eqid | |- ( W |`s S ) = ( W |`s S ) |
|
| 10 | 9 3 | ressbas | |- ( S e. ( SubRing ` W ) -> ( S i^i ( Base ` W ) ) = ( Base ` ( W |`s S ) ) ) |
| 11 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 12 | 9 11 | ressplusg | |- ( S e. ( SubRing ` W ) -> ( +g ` W ) = ( +g ` ( W |`s S ) ) ) |
| 13 | eqid | |- ( .r ` W ) = ( .r ` W ) |
|
| 14 | 9 13 | ressmulr | |- ( S e. ( SubRing ` W ) -> ( .r ` W ) = ( .r ` ( W |`s S ) ) ) |
| 15 | eqid | |- ( 1r ` W ) = ( 1r ` W ) |
|
| 16 | 9 15 | subrg1 | |- ( S e. ( SubRing ` W ) -> ( 1r ` W ) = ( 1r ` ( W |`s S ) ) ) |
| 17 | 9 | subrgring | |- ( S e. ( SubRing ` W ) -> ( W |`s S ) e. Ring ) |
| 18 | subrgrcl | |- ( S e. ( SubRing ` W ) -> W e. Ring ) |
|
| 19 | ringgrp | |- ( W e. Ring -> W e. Grp ) |
|
| 20 | 18 19 | syl | |- ( S e. ( SubRing ` W ) -> W e. Grp ) |
| 21 | eqidd | |- ( S e. ( SubRing ` W ) -> ( Base ` W ) = ( Base ` W ) ) |
|
| 22 | 6 | oveqdr | |- ( ( S e. ( SubRing ` W ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( x ( +g ` W ) y ) = ( x ( +g ` A ) y ) ) |
| 23 | 21 5 22 | grppropd | |- ( S e. ( SubRing ` W ) -> ( W e. Grp <-> A e. Grp ) ) |
| 24 | 20 23 | mpbid | |- ( S e. ( SubRing ` W ) -> A e. Grp ) |
| 25 | 18 | 3ad2ant1 | |- ( ( S e. ( SubRing ` W ) /\ x e. ( S i^i ( Base ` W ) ) /\ y e. ( Base ` W ) ) -> W e. Ring ) |
| 26 | elinel2 | |- ( x e. ( S i^i ( Base ` W ) ) -> x e. ( Base ` W ) ) |
|
| 27 | 26 | 3ad2ant2 | |- ( ( S e. ( SubRing ` W ) /\ x e. ( S i^i ( Base ` W ) ) /\ y e. ( Base ` W ) ) -> x e. ( Base ` W ) ) |
| 28 | simp3 | |- ( ( S e. ( SubRing ` W ) /\ x e. ( S i^i ( Base ` W ) ) /\ y e. ( Base ` W ) ) -> y e. ( Base ` W ) ) |
|
| 29 | 3 13 | ringcl | |- ( ( W e. Ring /\ x e. ( Base ` W ) /\ y e. ( Base ` W ) ) -> ( x ( .r ` W ) y ) e. ( Base ` W ) ) |
| 30 | 25 27 28 29 | syl3anc | |- ( ( S e. ( SubRing ` W ) /\ x e. ( S i^i ( Base ` W ) ) /\ y e. ( Base ` W ) ) -> ( x ( .r ` W ) y ) e. ( Base ` W ) ) |
| 31 | 18 | adantr | |- ( ( S e. ( SubRing ` W ) /\ ( x e. ( S i^i ( Base ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> W e. Ring ) |
| 32 | simpr1 | |- ( ( S e. ( SubRing ` W ) /\ ( x e. ( S i^i ( Base ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> x e. ( S i^i ( Base ` W ) ) ) |
|
| 33 | 32 | elin2d | |- ( ( S e. ( SubRing ` W ) /\ ( x e. ( S i^i ( Base ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> x e. ( Base ` W ) ) |
| 34 | simpr2 | |- ( ( S e. ( SubRing ` W ) /\ ( x e. ( S i^i ( Base ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> y e. ( Base ` W ) ) |
|
| 35 | simpr3 | |- ( ( S e. ( SubRing ` W ) /\ ( x e. ( S i^i ( Base ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> z e. ( Base ` W ) ) |
|
| 36 | 3 11 13 | ringdi | |- ( ( W e. Ring /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( x ( .r ` W ) ( y ( +g ` W ) z ) ) = ( ( x ( .r ` W ) y ) ( +g ` W ) ( x ( .r ` W ) z ) ) ) |
| 37 | 31 33 34 35 36 | syl13anc | |- ( ( S e. ( SubRing ` W ) /\ ( x e. ( S i^i ( Base ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( x ( .r ` W ) ( y ( +g ` W ) z ) ) = ( ( x ( .r ` W ) y ) ( +g ` W ) ( x ( .r ` W ) z ) ) ) |
| 38 | 18 | adantr | |- ( ( S e. ( SubRing ` W ) /\ ( x e. ( S i^i ( Base ` W ) ) /\ y e. ( S i^i ( Base ` W ) ) /\ z e. ( Base ` W ) ) ) -> W e. Ring ) |
| 39 | simpr1 | |- ( ( S e. ( SubRing ` W ) /\ ( x e. ( S i^i ( Base ` W ) ) /\ y e. ( S i^i ( Base ` W ) ) /\ z e. ( Base ` W ) ) ) -> x e. ( S i^i ( Base ` W ) ) ) |
|
| 40 | 39 | elin2d | |- ( ( S e. ( SubRing ` W ) /\ ( x e. ( S i^i ( Base ` W ) ) /\ y e. ( S i^i ( Base ` W ) ) /\ z e. ( Base ` W ) ) ) -> x e. ( Base ` W ) ) |
| 41 | simpr2 | |- ( ( S e. ( SubRing ` W ) /\ ( x e. ( S i^i ( Base ` W ) ) /\ y e. ( S i^i ( Base ` W ) ) /\ z e. ( Base ` W ) ) ) -> y e. ( S i^i ( Base ` W ) ) ) |
|
| 42 | 41 | elin2d | |- ( ( S e. ( SubRing ` W ) /\ ( x e. ( S i^i ( Base ` W ) ) /\ y e. ( S i^i ( Base ` W ) ) /\ z e. ( Base ` W ) ) ) -> y e. ( Base ` W ) ) |
| 43 | simpr3 | |- ( ( S e. ( SubRing ` W ) /\ ( x e. ( S i^i ( Base ` W ) ) /\ y e. ( S i^i ( Base ` W ) ) /\ z e. ( Base ` W ) ) ) -> z e. ( Base ` W ) ) |
|
| 44 | 3 11 13 | ringdir | |- ( ( W e. Ring /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( ( x ( +g ` W ) y ) ( .r ` W ) z ) = ( ( x ( .r ` W ) z ) ( +g ` W ) ( y ( .r ` W ) z ) ) ) |
| 45 | 38 40 42 43 44 | syl13anc | |- ( ( S e. ( SubRing ` W ) /\ ( x e. ( S i^i ( Base ` W ) ) /\ y e. ( S i^i ( Base ` W ) ) /\ z e. ( Base ` W ) ) ) -> ( ( x ( +g ` W ) y ) ( .r ` W ) z ) = ( ( x ( .r ` W ) z ) ( +g ` W ) ( y ( .r ` W ) z ) ) ) |
| 46 | 3 13 | ringass | |- ( ( W e. Ring /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( ( x ( .r ` W ) y ) ( .r ` W ) z ) = ( x ( .r ` W ) ( y ( .r ` W ) z ) ) ) |
| 47 | 38 40 42 43 46 | syl13anc | |- ( ( S e. ( SubRing ` W ) /\ ( x e. ( S i^i ( Base ` W ) ) /\ y e. ( S i^i ( Base ` W ) ) /\ z e. ( Base ` W ) ) ) -> ( ( x ( .r ` W ) y ) ( .r ` W ) z ) = ( x ( .r ` W ) ( y ( .r ` W ) z ) ) ) |
| 48 | 3 13 15 | ringlidm | |- ( ( W e. Ring /\ x e. ( Base ` W ) ) -> ( ( 1r ` W ) ( .r ` W ) x ) = x ) |
| 49 | 18 48 | sylan | |- ( ( S e. ( SubRing ` W ) /\ x e. ( Base ` W ) ) -> ( ( 1r ` W ) ( .r ` W ) x ) = x ) |
| 50 | 5 6 7 8 10 12 14 16 17 24 30 37 45 47 49 | islmodd | |- ( S e. ( SubRing ` W ) -> A e. LMod ) |