This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar product operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Proof shortened by AV, 12-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srapart.a | |- ( ph -> A = ( ( subringAlg ` W ) ` S ) ) |
|
| srapart.s | |- ( ph -> S C_ ( Base ` W ) ) |
||
| Assertion | sravsca | |- ( ph -> ( .r ` W ) = ( .s ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srapart.a | |- ( ph -> A = ( ( subringAlg ` W ) ` S ) ) |
|
| 2 | srapart.s | |- ( ph -> S C_ ( Base ` W ) ) |
|
| 3 | ovex | |- ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) e. _V |
|
| 4 | fvex | |- ( .r ` W ) e. _V |
|
| 5 | vscaid | |- .s = Slot ( .s ` ndx ) |
|
| 6 | 5 | setsid | |- ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) e. _V /\ ( .r ` W ) e. _V ) -> ( .r ` W ) = ( .s ` ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) ) ) |
| 7 | 3 4 6 | mp2an | |- ( .r ` W ) = ( .s ` ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) ) |
| 8 | slotsdifipndx | |- ( ( .s ` ndx ) =/= ( .i ` ndx ) /\ ( Scalar ` ndx ) =/= ( .i ` ndx ) ) |
|
| 9 | 8 | simpli | |- ( .s ` ndx ) =/= ( .i ` ndx ) |
| 10 | 5 9 | setsnid | |- ( .s ` ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) ) = ( .s ` ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
| 11 | 7 10 | eqtri | |- ( .r ` W ) = ( .s ` ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
| 12 | 1 | adantl | |- ( ( W e. _V /\ ph ) -> A = ( ( subringAlg ` W ) ` S ) ) |
| 13 | sraval | |- ( ( W e. _V /\ S C_ ( Base ` W ) ) -> ( ( subringAlg ` W ) ` S ) = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
|
| 14 | 2 13 | sylan2 | |- ( ( W e. _V /\ ph ) -> ( ( subringAlg ` W ) ` S ) = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
| 15 | 12 14 | eqtrd | |- ( ( W e. _V /\ ph ) -> A = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
| 16 | 15 | fveq2d | |- ( ( W e. _V /\ ph ) -> ( .s ` A ) = ( .s ` ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) ) |
| 17 | 11 16 | eqtr4id | |- ( ( W e. _V /\ ph ) -> ( .r ` W ) = ( .s ` A ) ) |
| 18 | 5 | str0 | |- (/) = ( .s ` (/) ) |
| 19 | fvprc | |- ( -. W e. _V -> ( .r ` W ) = (/) ) |
|
| 20 | 19 | adantr | |- ( ( -. W e. _V /\ ph ) -> ( .r ` W ) = (/) ) |
| 21 | fv2prc | |- ( -. W e. _V -> ( ( subringAlg ` W ) ` S ) = (/) ) |
|
| 22 | 1 21 | sylan9eqr | |- ( ( -. W e. _V /\ ph ) -> A = (/) ) |
| 23 | 22 | fveq2d | |- ( ( -. W e. _V /\ ph ) -> ( .s ` A ) = ( .s ` (/) ) ) |
| 24 | 18 20 23 | 3eqtr4a | |- ( ( -. W e. _V /\ ph ) -> ( .r ` W ) = ( .s ` A ) ) |
| 25 | 17 24 | pm2.61ian | |- ( ph -> ( .r ` W ) = ( .s ` A ) ) |