This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of scalars of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Proof shortened by AV, 12-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srapart.a | |- ( ph -> A = ( ( subringAlg ` W ) ` S ) ) |
|
| srapart.s | |- ( ph -> S C_ ( Base ` W ) ) |
||
| Assertion | srasca | |- ( ph -> ( W |`s S ) = ( Scalar ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srapart.a | |- ( ph -> A = ( ( subringAlg ` W ) ` S ) ) |
|
| 2 | srapart.s | |- ( ph -> S C_ ( Base ` W ) ) |
|
| 3 | scaid | |- Scalar = Slot ( Scalar ` ndx ) |
|
| 4 | vscandxnscandx | |- ( .s ` ndx ) =/= ( Scalar ` ndx ) |
|
| 5 | 4 | necomi | |- ( Scalar ` ndx ) =/= ( .s ` ndx ) |
| 6 | 3 5 | setsnid | |- ( Scalar ` ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) ) = ( Scalar ` ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) ) |
| 7 | slotsdifipndx | |- ( ( .s ` ndx ) =/= ( .i ` ndx ) /\ ( Scalar ` ndx ) =/= ( .i ` ndx ) ) |
|
| 8 | 7 | simpri | |- ( Scalar ` ndx ) =/= ( .i ` ndx ) |
| 9 | 3 8 | setsnid | |- ( Scalar ` ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) ) = ( Scalar ` ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
| 10 | 6 9 | eqtri | |- ( Scalar ` ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) ) = ( Scalar ` ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
| 11 | ovexd | |- ( ph -> ( W |`s S ) e. _V ) |
|
| 12 | 3 | setsid | |- ( ( W e. _V /\ ( W |`s S ) e. _V ) -> ( W |`s S ) = ( Scalar ` ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) ) ) |
| 13 | 11 12 | sylan2 | |- ( ( W e. _V /\ ph ) -> ( W |`s S ) = ( Scalar ` ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) ) ) |
| 14 | 1 | adantl | |- ( ( W e. _V /\ ph ) -> A = ( ( subringAlg ` W ) ` S ) ) |
| 15 | sraval | |- ( ( W e. _V /\ S C_ ( Base ` W ) ) -> ( ( subringAlg ` W ) ` S ) = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
|
| 16 | 2 15 | sylan2 | |- ( ( W e. _V /\ ph ) -> ( ( subringAlg ` W ) ` S ) = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
| 17 | 14 16 | eqtrd | |- ( ( W e. _V /\ ph ) -> A = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
| 18 | 17 | fveq2d | |- ( ( W e. _V /\ ph ) -> ( Scalar ` A ) = ( Scalar ` ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) ) |
| 19 | 10 13 18 | 3eqtr4a | |- ( ( W e. _V /\ ph ) -> ( W |`s S ) = ( Scalar ` A ) ) |
| 20 | 3 | str0 | |- (/) = ( Scalar ` (/) ) |
| 21 | reldmress | |- Rel dom |`s |
|
| 22 | 21 | ovprc1 | |- ( -. W e. _V -> ( W |`s S ) = (/) ) |
| 23 | 22 | adantr | |- ( ( -. W e. _V /\ ph ) -> ( W |`s S ) = (/) ) |
| 24 | fv2prc | |- ( -. W e. _V -> ( ( subringAlg ` W ) ` S ) = (/) ) |
|
| 25 | 1 24 | sylan9eqr | |- ( ( -. W e. _V /\ ph ) -> A = (/) ) |
| 26 | 25 | fveq2d | |- ( ( -. W e. _V /\ ph ) -> ( Scalar ` A ) = ( Scalar ` (/) ) ) |
| 27 | 20 23 26 | 3eqtr4a | |- ( ( -. W e. _V /\ ph ) -> ( W |`s S ) = ( Scalar ` A ) ) |
| 28 | 19 27 | pm2.61ian | |- ( ph -> ( W |`s S ) = ( Scalar ` A ) ) |