This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of being a homomorphism of left modules. (Contributed by Stefan O'Rear, 1-Jan-2015) (Proof shortened by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islmhm.k | |- K = ( Scalar ` S ) |
|
| islmhm.l | |- L = ( Scalar ` T ) |
||
| islmhm.b | |- B = ( Base ` K ) |
||
| islmhm.e | |- E = ( Base ` S ) |
||
| islmhm.m | |- .x. = ( .s ` S ) |
||
| islmhm.n | |- .X. = ( .s ` T ) |
||
| Assertion | islmhm | |- ( F e. ( S LMHom T ) <-> ( ( S e. LMod /\ T e. LMod ) /\ ( F e. ( S GrpHom T ) /\ L = K /\ A. x e. B A. y e. E ( F ` ( x .x. y ) ) = ( x .X. ( F ` y ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islmhm.k | |- K = ( Scalar ` S ) |
|
| 2 | islmhm.l | |- L = ( Scalar ` T ) |
|
| 3 | islmhm.b | |- B = ( Base ` K ) |
|
| 4 | islmhm.e | |- E = ( Base ` S ) |
|
| 5 | islmhm.m | |- .x. = ( .s ` S ) |
|
| 6 | islmhm.n | |- .X. = ( .s ` T ) |
|
| 7 | df-lmhm | |- LMHom = ( s e. LMod , t e. LMod |-> { f e. ( s GrpHom t ) | [. ( Scalar ` s ) / w ]. ( ( Scalar ` t ) = w /\ A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) ) } ) |
|
| 8 | 7 | elmpocl | |- ( F e. ( S LMHom T ) -> ( S e. LMod /\ T e. LMod ) ) |
| 9 | oveq12 | |- ( ( s = S /\ t = T ) -> ( s GrpHom t ) = ( S GrpHom T ) ) |
|
| 10 | fvexd | |- ( ( s = S /\ t = T ) -> ( Scalar ` s ) e. _V ) |
|
| 11 | simplr | |- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> t = T ) |
|
| 12 | 11 | fveq2d | |- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( Scalar ` t ) = ( Scalar ` T ) ) |
| 13 | 12 2 | eqtr4di | |- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( Scalar ` t ) = L ) |
| 14 | simpr | |- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> w = ( Scalar ` s ) ) |
|
| 15 | simpll | |- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> s = S ) |
|
| 16 | 15 | fveq2d | |- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( Scalar ` s ) = ( Scalar ` S ) ) |
| 17 | 14 16 | eqtrd | |- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> w = ( Scalar ` S ) ) |
| 18 | 17 1 | eqtr4di | |- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> w = K ) |
| 19 | 13 18 | eqeq12d | |- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( ( Scalar ` t ) = w <-> L = K ) ) |
| 20 | 18 | fveq2d | |- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( Base ` w ) = ( Base ` K ) ) |
| 21 | 20 3 | eqtr4di | |- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( Base ` w ) = B ) |
| 22 | 15 | fveq2d | |- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( Base ` s ) = ( Base ` S ) ) |
| 23 | 22 4 | eqtr4di | |- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( Base ` s ) = E ) |
| 24 | 15 | fveq2d | |- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( .s ` s ) = ( .s ` S ) ) |
| 25 | 24 5 | eqtr4di | |- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( .s ` s ) = .x. ) |
| 26 | 25 | oveqd | |- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( x ( .s ` s ) y ) = ( x .x. y ) ) |
| 27 | 26 | fveq2d | |- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( f ` ( x ( .s ` s ) y ) ) = ( f ` ( x .x. y ) ) ) |
| 28 | 11 | fveq2d | |- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( .s ` t ) = ( .s ` T ) ) |
| 29 | 28 6 | eqtr4di | |- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( .s ` t ) = .X. ) |
| 30 | 29 | oveqd | |- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( x ( .s ` t ) ( f ` y ) ) = ( x .X. ( f ` y ) ) ) |
| 31 | 27 30 | eqeq12d | |- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) <-> ( f ` ( x .x. y ) ) = ( x .X. ( f ` y ) ) ) ) |
| 32 | 23 31 | raleqbidv | |- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) <-> A. y e. E ( f ` ( x .x. y ) ) = ( x .X. ( f ` y ) ) ) ) |
| 33 | 21 32 | raleqbidv | |- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) <-> A. x e. B A. y e. E ( f ` ( x .x. y ) ) = ( x .X. ( f ` y ) ) ) ) |
| 34 | 19 33 | anbi12d | |- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( ( ( Scalar ` t ) = w /\ A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) ) <-> ( L = K /\ A. x e. B A. y e. E ( f ` ( x .x. y ) ) = ( x .X. ( f ` y ) ) ) ) ) |
| 35 | 10 34 | sbcied | |- ( ( s = S /\ t = T ) -> ( [. ( Scalar ` s ) / w ]. ( ( Scalar ` t ) = w /\ A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) ) <-> ( L = K /\ A. x e. B A. y e. E ( f ` ( x .x. y ) ) = ( x .X. ( f ` y ) ) ) ) ) |
| 36 | 9 35 | rabeqbidv | |- ( ( s = S /\ t = T ) -> { f e. ( s GrpHom t ) | [. ( Scalar ` s ) / w ]. ( ( Scalar ` t ) = w /\ A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) ) } = { f e. ( S GrpHom T ) | ( L = K /\ A. x e. B A. y e. E ( f ` ( x .x. y ) ) = ( x .X. ( f ` y ) ) ) } ) |
| 37 | ovex | |- ( S GrpHom T ) e. _V |
|
| 38 | 37 | rabex | |- { f e. ( S GrpHom T ) | ( L = K /\ A. x e. B A. y e. E ( f ` ( x .x. y ) ) = ( x .X. ( f ` y ) ) ) } e. _V |
| 39 | 36 7 38 | ovmpoa | |- ( ( S e. LMod /\ T e. LMod ) -> ( S LMHom T ) = { f e. ( S GrpHom T ) | ( L = K /\ A. x e. B A. y e. E ( f ` ( x .x. y ) ) = ( x .X. ( f ` y ) ) ) } ) |
| 40 | 39 | eleq2d | |- ( ( S e. LMod /\ T e. LMod ) -> ( F e. ( S LMHom T ) <-> F e. { f e. ( S GrpHom T ) | ( L = K /\ A. x e. B A. y e. E ( f ` ( x .x. y ) ) = ( x .X. ( f ` y ) ) ) } ) ) |
| 41 | fveq1 | |- ( f = F -> ( f ` ( x .x. y ) ) = ( F ` ( x .x. y ) ) ) |
|
| 42 | fveq1 | |- ( f = F -> ( f ` y ) = ( F ` y ) ) |
|
| 43 | 42 | oveq2d | |- ( f = F -> ( x .X. ( f ` y ) ) = ( x .X. ( F ` y ) ) ) |
| 44 | 41 43 | eqeq12d | |- ( f = F -> ( ( f ` ( x .x. y ) ) = ( x .X. ( f ` y ) ) <-> ( F ` ( x .x. y ) ) = ( x .X. ( F ` y ) ) ) ) |
| 45 | 44 | 2ralbidv | |- ( f = F -> ( A. x e. B A. y e. E ( f ` ( x .x. y ) ) = ( x .X. ( f ` y ) ) <-> A. x e. B A. y e. E ( F ` ( x .x. y ) ) = ( x .X. ( F ` y ) ) ) ) |
| 46 | 45 | anbi2d | |- ( f = F -> ( ( L = K /\ A. x e. B A. y e. E ( f ` ( x .x. y ) ) = ( x .X. ( f ` y ) ) ) <-> ( L = K /\ A. x e. B A. y e. E ( F ` ( x .x. y ) ) = ( x .X. ( F ` y ) ) ) ) ) |
| 47 | 46 | elrab | |- ( F e. { f e. ( S GrpHom T ) | ( L = K /\ A. x e. B A. y e. E ( f ` ( x .x. y ) ) = ( x .X. ( f ` y ) ) ) } <-> ( F e. ( S GrpHom T ) /\ ( L = K /\ A. x e. B A. y e. E ( F ` ( x .x. y ) ) = ( x .X. ( F ` y ) ) ) ) ) |
| 48 | 3anass | |- ( ( F e. ( S GrpHom T ) /\ L = K /\ A. x e. B A. y e. E ( F ` ( x .x. y ) ) = ( x .X. ( F ` y ) ) ) <-> ( F e. ( S GrpHom T ) /\ ( L = K /\ A. x e. B A. y e. E ( F ` ( x .x. y ) ) = ( x .X. ( F ` y ) ) ) ) ) |
|
| 49 | 47 48 | bitr4i | |- ( F e. { f e. ( S GrpHom T ) | ( L = K /\ A. x e. B A. y e. E ( f ` ( x .x. y ) ) = ( x .X. ( f ` y ) ) ) } <-> ( F e. ( S GrpHom T ) /\ L = K /\ A. x e. B A. y e. E ( F ` ( x .x. y ) ) = ( x .X. ( F ` y ) ) ) ) |
| 50 | 40 49 | bitrdi | |- ( ( S e. LMod /\ T e. LMod ) -> ( F e. ( S LMHom T ) <-> ( F e. ( S GrpHom T ) /\ L = K /\ A. x e. B A. y e. E ( F ` ( x .x. y ) ) = ( x .X. ( F ` y ) ) ) ) ) |
| 51 | 8 50 | biadanii | |- ( F e. ( S LMHom T ) <-> ( ( S e. LMod /\ T e. LMod ) /\ ( F e. ( S GrpHom T ) /\ L = K /\ A. x e. B A. y e. E ( F ` ( x .x. y ) ) = ( x .X. ( F ` y ) ) ) ) ) |