This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group homomorphism depends only on the group attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmpropd.a | |- ( ph -> B = ( Base ` J ) ) |
|
| ghmpropd.b | |- ( ph -> C = ( Base ` K ) ) |
||
| ghmpropd.c | |- ( ph -> B = ( Base ` L ) ) |
||
| ghmpropd.d | |- ( ph -> C = ( Base ` M ) ) |
||
| ghmpropd.e | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` J ) y ) = ( x ( +g ` L ) y ) ) |
||
| ghmpropd.f | |- ( ( ph /\ ( x e. C /\ y e. C ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` M ) y ) ) |
||
| Assertion | ghmpropd | |- ( ph -> ( J GrpHom K ) = ( L GrpHom M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmpropd.a | |- ( ph -> B = ( Base ` J ) ) |
|
| 2 | ghmpropd.b | |- ( ph -> C = ( Base ` K ) ) |
|
| 3 | ghmpropd.c | |- ( ph -> B = ( Base ` L ) ) |
|
| 4 | ghmpropd.d | |- ( ph -> C = ( Base ` M ) ) |
|
| 5 | ghmpropd.e | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` J ) y ) = ( x ( +g ` L ) y ) ) |
|
| 6 | ghmpropd.f | |- ( ( ph /\ ( x e. C /\ y e. C ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` M ) y ) ) |
|
| 7 | 1 3 5 | grppropd | |- ( ph -> ( J e. Grp <-> L e. Grp ) ) |
| 8 | 2 4 6 | grppropd | |- ( ph -> ( K e. Grp <-> M e. Grp ) ) |
| 9 | 7 8 | anbi12d | |- ( ph -> ( ( J e. Grp /\ K e. Grp ) <-> ( L e. Grp /\ M e. Grp ) ) ) |
| 10 | 1 2 3 4 5 6 | mhmpropd | |- ( ph -> ( J MndHom K ) = ( L MndHom M ) ) |
| 11 | 10 | eleq2d | |- ( ph -> ( f e. ( J MndHom K ) <-> f e. ( L MndHom M ) ) ) |
| 12 | 9 11 | anbi12d | |- ( ph -> ( ( ( J e. Grp /\ K e. Grp ) /\ f e. ( J MndHom K ) ) <-> ( ( L e. Grp /\ M e. Grp ) /\ f e. ( L MndHom M ) ) ) ) |
| 13 | ghmgrp1 | |- ( f e. ( J GrpHom K ) -> J e. Grp ) |
|
| 14 | ghmgrp2 | |- ( f e. ( J GrpHom K ) -> K e. Grp ) |
|
| 15 | 13 14 | jca | |- ( f e. ( J GrpHom K ) -> ( J e. Grp /\ K e. Grp ) ) |
| 16 | ghmmhmb | |- ( ( J e. Grp /\ K e. Grp ) -> ( J GrpHom K ) = ( J MndHom K ) ) |
|
| 17 | 16 | eleq2d | |- ( ( J e. Grp /\ K e. Grp ) -> ( f e. ( J GrpHom K ) <-> f e. ( J MndHom K ) ) ) |
| 18 | 15 17 | biadanii | |- ( f e. ( J GrpHom K ) <-> ( ( J e. Grp /\ K e. Grp ) /\ f e. ( J MndHom K ) ) ) |
| 19 | ghmgrp1 | |- ( f e. ( L GrpHom M ) -> L e. Grp ) |
|
| 20 | ghmgrp2 | |- ( f e. ( L GrpHom M ) -> M e. Grp ) |
|
| 21 | 19 20 | jca | |- ( f e. ( L GrpHom M ) -> ( L e. Grp /\ M e. Grp ) ) |
| 22 | ghmmhmb | |- ( ( L e. Grp /\ M e. Grp ) -> ( L GrpHom M ) = ( L MndHom M ) ) |
|
| 23 | 22 | eleq2d | |- ( ( L e. Grp /\ M e. Grp ) -> ( f e. ( L GrpHom M ) <-> f e. ( L MndHom M ) ) ) |
| 24 | 21 23 | biadanii | |- ( f e. ( L GrpHom M ) <-> ( ( L e. Grp /\ M e. Grp ) /\ f e. ( L MndHom M ) ) ) |
| 25 | 12 18 24 | 3bitr4g | |- ( ph -> ( f e. ( J GrpHom K ) <-> f e. ( L GrpHom M ) ) ) |
| 26 | 25 | eqrdv | |- ( ph -> ( J GrpHom K ) = ( L GrpHom M ) ) |