This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of two natural transformations is a natural transformation. Remark 6.14(a) in Adamek p. 87. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fuccocl.q | |- Q = ( C FuncCat D ) |
|
| fuccocl.n | |- N = ( C Nat D ) |
||
| fuccocl.x | |- .xb = ( comp ` Q ) |
||
| fuccocl.r | |- ( ph -> R e. ( F N G ) ) |
||
| fuccocl.s | |- ( ph -> S e. ( G N H ) ) |
||
| Assertion | fuccocl | |- ( ph -> ( S ( <. F , G >. .xb H ) R ) e. ( F N H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fuccocl.q | |- Q = ( C FuncCat D ) |
|
| 2 | fuccocl.n | |- N = ( C Nat D ) |
|
| 3 | fuccocl.x | |- .xb = ( comp ` Q ) |
|
| 4 | fuccocl.r | |- ( ph -> R e. ( F N G ) ) |
|
| 5 | fuccocl.s | |- ( ph -> S e. ( G N H ) ) |
|
| 6 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 7 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 8 | 1 2 6 7 3 4 5 | fucco | |- ( ph -> ( S ( <. F , G >. .xb H ) R ) = ( x e. ( Base ` C ) |-> ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) ) |
| 9 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 10 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 11 | 2 | natrcl | |- ( R e. ( F N G ) -> ( F e. ( C Func D ) /\ G e. ( C Func D ) ) ) |
| 12 | 4 11 | syl | |- ( ph -> ( F e. ( C Func D ) /\ G e. ( C Func D ) ) ) |
| 13 | 12 | simpld | |- ( ph -> F e. ( C Func D ) ) |
| 14 | funcrcl | |- ( F e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
|
| 15 | 13 14 | syl | |- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
| 16 | 15 | simprd | |- ( ph -> D e. Cat ) |
| 17 | 16 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> D e. Cat ) |
| 18 | relfunc | |- Rel ( C Func D ) |
|
| 19 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
|
| 20 | 18 13 19 | sylancr | |- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 21 | 6 9 20 | funcf1 | |- ( ph -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
| 22 | 21 | ffvelcdmda | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
| 23 | 2 | natrcl | |- ( S e. ( G N H ) -> ( G e. ( C Func D ) /\ H e. ( C Func D ) ) ) |
| 24 | 5 23 | syl | |- ( ph -> ( G e. ( C Func D ) /\ H e. ( C Func D ) ) ) |
| 25 | 24 | simpld | |- ( ph -> G e. ( C Func D ) ) |
| 26 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ G e. ( C Func D ) ) -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
|
| 27 | 18 25 26 | sylancr | |- ( ph -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
| 28 | 6 9 27 | funcf1 | |- ( ph -> ( 1st ` G ) : ( Base ` C ) --> ( Base ` D ) ) |
| 29 | 28 | ffvelcdmda | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` G ) ` x ) e. ( Base ` D ) ) |
| 30 | 24 | simprd | |- ( ph -> H e. ( C Func D ) ) |
| 31 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ H e. ( C Func D ) ) -> ( 1st ` H ) ( C Func D ) ( 2nd ` H ) ) |
|
| 32 | 18 30 31 | sylancr | |- ( ph -> ( 1st ` H ) ( C Func D ) ( 2nd ` H ) ) |
| 33 | 6 9 32 | funcf1 | |- ( ph -> ( 1st ` H ) : ( Base ` C ) --> ( Base ` D ) ) |
| 34 | 33 | ffvelcdmda | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` H ) ` x ) e. ( Base ` D ) ) |
| 35 | 2 4 | nat1st2nd | |- ( ph -> R e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) |
| 36 | 35 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> R e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) |
| 37 | simpr | |- ( ( ph /\ x e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
|
| 38 | 2 36 6 10 37 | natcl | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( R ` x ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` G ) ` x ) ) ) |
| 39 | 2 5 | nat1st2nd | |- ( ph -> S e. ( <. ( 1st ` G ) , ( 2nd ` G ) >. N <. ( 1st ` H ) , ( 2nd ` H ) >. ) ) |
| 40 | 39 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> S e. ( <. ( 1st ` G ) , ( 2nd ` G ) >. N <. ( 1st ` H ) , ( 2nd ` H ) >. ) ) |
| 41 | 2 40 6 10 37 | natcl | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( S ` x ) e. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` H ) ` x ) ) ) |
| 42 | 9 10 7 17 22 29 34 38 41 | catcocl | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` x ) ) ( R ` x ) ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` H ) ` x ) ) ) |
| 43 | 42 | ralrimiva | |- ( ph -> A. x e. ( Base ` C ) ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` x ) ) ( R ` x ) ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` H ) ` x ) ) ) |
| 44 | fvex | |- ( Base ` C ) e. _V |
|
| 45 | mptelixpg | |- ( ( Base ` C ) e. _V -> ( ( x e. ( Base ` C ) |-> ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) e. X_ x e. ( Base ` C ) ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` H ) ` x ) ) <-> A. x e. ( Base ` C ) ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` x ) ) ( R ` x ) ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` H ) ` x ) ) ) ) |
|
| 46 | 44 45 | ax-mp | |- ( ( x e. ( Base ` C ) |-> ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) e. X_ x e. ( Base ` C ) ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` H ) ` x ) ) <-> A. x e. ( Base ` C ) ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` x ) ) ( R ` x ) ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` H ) ` x ) ) ) |
| 47 | 43 46 | sylibr | |- ( ph -> ( x e. ( Base ` C ) |-> ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) e. X_ x e. ( Base ` C ) ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` H ) ` x ) ) ) |
| 48 | 8 47 | eqeltrd | |- ( ph -> ( S ( <. F , G >. .xb H ) R ) e. X_ x e. ( Base ` C ) ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` H ) ` x ) ) ) |
| 49 | 16 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> D e. Cat ) |
| 50 | 21 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
| 51 | simpr1 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> x e. ( Base ` C ) ) |
|
| 52 | 50 51 | ffvelcdmd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
| 53 | simpr2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> y e. ( Base ` C ) ) |
|
| 54 | 50 53 | ffvelcdmd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( 1st ` F ) ` y ) e. ( Base ` D ) ) |
| 55 | 28 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( 1st ` G ) : ( Base ` C ) --> ( Base ` D ) ) |
| 56 | 55 53 | ffvelcdmd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( 1st ` G ) ` y ) e. ( Base ` D ) ) |
| 57 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 58 | 20 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 59 | 6 57 10 58 51 53 | funcf2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 60 | simpr3 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> f e. ( x ( Hom ` C ) y ) ) |
|
| 61 | 59 60 | ffvelcdmd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( x ( 2nd ` F ) y ) ` f ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 62 | 35 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> R e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) |
| 63 | 2 62 6 10 53 | natcl | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( R ` y ) e. ( ( ( 1st ` F ) ` y ) ( Hom ` D ) ( ( 1st ` G ) ` y ) ) ) |
| 64 | 33 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( 1st ` H ) : ( Base ` C ) --> ( Base ` D ) ) |
| 65 | 64 53 | ffvelcdmd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( 1st ` H ) ` y ) e. ( Base ` D ) ) |
| 66 | 39 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> S e. ( <. ( 1st ` G ) , ( 2nd ` G ) >. N <. ( 1st ` H ) , ( 2nd ` H ) >. ) ) |
| 67 | 2 66 6 10 53 | natcl | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( S ` y ) e. ( ( ( 1st ` G ) ` y ) ( Hom ` D ) ( ( 1st ` H ) ` y ) ) ) |
| 68 | 9 10 7 49 52 54 56 61 63 65 67 | catass | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( ( S ` y ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( R ` y ) ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( S ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( R ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) ) ) |
| 69 | 2 62 6 57 7 51 53 60 | nati | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( R ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( ( x ( 2nd ` G ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` G ) ` y ) ) ( R ` x ) ) ) |
| 70 | 69 | oveq2d | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( S ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( R ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) ) = ( ( S ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( ( x ( 2nd ` G ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` G ) ` y ) ) ( R ` x ) ) ) ) |
| 71 | 55 51 | ffvelcdmd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( 1st ` G ) ` x ) e. ( Base ` D ) ) |
| 72 | 2 62 6 10 51 | natcl | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( R ` x ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` G ) ` x ) ) ) |
| 73 | 27 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
| 74 | 6 57 10 73 51 53 | funcf2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( x ( 2nd ` G ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` G ) ` y ) ) ) |
| 75 | 74 60 | ffvelcdmd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( x ( 2nd ` G ) y ) ` f ) e. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` G ) ` y ) ) ) |
| 76 | 9 10 7 49 52 71 56 72 75 65 67 | catass | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( ( S ` y ) ( <. ( ( 1st ` G ) ` x ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( x ( 2nd ` G ) y ) ` f ) ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( R ` x ) ) = ( ( S ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( ( x ( 2nd ` G ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` G ) ` y ) ) ( R ` x ) ) ) ) |
| 77 | 2 66 6 57 7 51 53 60 | nati | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( S ` y ) ( <. ( ( 1st ` G ) ` x ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( x ( 2nd ` G ) y ) ` f ) ) = ( ( ( x ( 2nd ` H ) y ) ` f ) ( <. ( ( 1st ` G ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( S ` x ) ) ) |
| 78 | 77 | oveq1d | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( ( S ` y ) ( <. ( ( 1st ` G ) ` x ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( x ( 2nd ` G ) y ) ` f ) ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( R ` x ) ) = ( ( ( ( x ( 2nd ` H ) y ) ` f ) ( <. ( ( 1st ` G ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( S ` x ) ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( R ` x ) ) ) |
| 79 | 70 76 78 | 3eqtr2d | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( S ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( R ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) ) = ( ( ( ( x ( 2nd ` H ) y ) ` f ) ( <. ( ( 1st ` G ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( S ` x ) ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( R ` x ) ) ) |
| 80 | 64 51 | ffvelcdmd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( 1st ` H ) ` x ) e. ( Base ` D ) ) |
| 81 | 2 66 6 10 51 | natcl | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( S ` x ) e. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` H ) ` x ) ) ) |
| 82 | 32 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( 1st ` H ) ( C Func D ) ( 2nd ` H ) ) |
| 83 | 6 57 10 82 51 53 | funcf2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( x ( 2nd ` H ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` H ) ` x ) ( Hom ` D ) ( ( 1st ` H ) ` y ) ) ) |
| 84 | 83 60 | ffvelcdmd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( x ( 2nd ` H ) y ) ` f ) e. ( ( ( 1st ` H ) ` x ) ( Hom ` D ) ( ( 1st ` H ) ` y ) ) ) |
| 85 | 9 10 7 49 52 71 80 72 81 65 84 | catass | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( ( ( x ( 2nd ` H ) y ) ` f ) ( <. ( ( 1st ` G ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( S ` x ) ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( R ` x ) ) = ( ( ( x ( 2nd ` H ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) ) |
| 86 | 68 79 85 | 3eqtrd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( ( S ` y ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( R ` y ) ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( ( x ( 2nd ` H ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) ) |
| 87 | 4 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> R e. ( F N G ) ) |
| 88 | 5 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> S e. ( G N H ) ) |
| 89 | 1 2 6 7 3 87 88 53 | fuccoval | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( S ( <. F , G >. .xb H ) R ) ` y ) = ( ( S ` y ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( R ` y ) ) ) |
| 90 | 89 | oveq1d | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( ( S ( <. F , G >. .xb H ) R ) ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( ( S ` y ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( R ` y ) ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 91 | 1 2 6 7 3 87 88 51 | fuccoval | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( S ( <. F , G >. .xb H ) R ) ` x ) = ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) |
| 92 | 91 | oveq2d | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( ( x ( 2nd ` H ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( S ( <. F , G >. .xb H ) R ) ` x ) ) = ( ( ( x ( 2nd ` H ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) ) |
| 93 | 86 90 92 | 3eqtr4d | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( ( S ( <. F , G >. .xb H ) R ) ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( ( x ( 2nd ` H ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( S ( <. F , G >. .xb H ) R ) ` x ) ) ) |
| 94 | 93 | ralrimivvva | |- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) ( ( ( S ( <. F , G >. .xb H ) R ) ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( ( x ( 2nd ` H ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( S ( <. F , G >. .xb H ) R ) ` x ) ) ) |
| 95 | 2 6 57 10 7 13 30 | isnat2 | |- ( ph -> ( ( S ( <. F , G >. .xb H ) R ) e. ( F N H ) <-> ( ( S ( <. F , G >. .xb H ) R ) e. X_ x e. ( Base ` C ) ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` H ) ` x ) ) /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) ( ( ( S ( <. F , G >. .xb H ) R ) ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( ( x ( 2nd ` H ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( S ( <. F , G >. .xb H ) R ) ` x ) ) ) ) ) |
| 96 | 48 94 95 | mpbir2and | |- ( ph -> ( S ( <. F , G >. .xb H ) R ) e. ( F N H ) ) |