This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efiatan2 | |- ( A e. dom arctan -> ( exp ` ( _i x. ( arctan ` A ) ) ) = ( ( 1 + ( _i x. A ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | |- _i e. CC |
|
| 2 | atancl | |- ( A e. dom arctan -> ( arctan ` A ) e. CC ) |
|
| 3 | mulcl | |- ( ( _i e. CC /\ ( arctan ` A ) e. CC ) -> ( _i x. ( arctan ` A ) ) e. CC ) |
|
| 4 | 1 2 3 | sylancr | |- ( A e. dom arctan -> ( _i x. ( arctan ` A ) ) e. CC ) |
| 5 | efcl | |- ( ( _i x. ( arctan ` A ) ) e. CC -> ( exp ` ( _i x. ( arctan ` A ) ) ) e. CC ) |
|
| 6 | 4 5 | syl | |- ( A e. dom arctan -> ( exp ` ( _i x. ( arctan ` A ) ) ) e. CC ) |
| 7 | ax-1cn | |- 1 e. CC |
|
| 8 | atandm2 | |- ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) |
|
| 9 | 8 | simp1bi | |- ( A e. dom arctan -> A e. CC ) |
| 10 | 9 | sqcld | |- ( A e. dom arctan -> ( A ^ 2 ) e. CC ) |
| 11 | addcl | |- ( ( 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( 1 + ( A ^ 2 ) ) e. CC ) |
|
| 12 | 7 10 11 | sylancr | |- ( A e. dom arctan -> ( 1 + ( A ^ 2 ) ) e. CC ) |
| 13 | 12 | sqrtcld | |- ( A e. dom arctan -> ( sqrt ` ( 1 + ( A ^ 2 ) ) ) e. CC ) |
| 14 | 12 | sqsqrtd | |- ( A e. dom arctan -> ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ^ 2 ) = ( 1 + ( A ^ 2 ) ) ) |
| 15 | atandm4 | |- ( A e. dom arctan <-> ( A e. CC /\ ( 1 + ( A ^ 2 ) ) =/= 0 ) ) |
|
| 16 | 15 | simprbi | |- ( A e. dom arctan -> ( 1 + ( A ^ 2 ) ) =/= 0 ) |
| 17 | 14 16 | eqnetrd | |- ( A e. dom arctan -> ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ^ 2 ) =/= 0 ) |
| 18 | sqne0 | |- ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) e. CC -> ( ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ^ 2 ) =/= 0 <-> ( sqrt ` ( 1 + ( A ^ 2 ) ) ) =/= 0 ) ) |
|
| 19 | 13 18 | syl | |- ( A e. dom arctan -> ( ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ^ 2 ) =/= 0 <-> ( sqrt ` ( 1 + ( A ^ 2 ) ) ) =/= 0 ) ) |
| 20 | 17 19 | mpbid | |- ( A e. dom arctan -> ( sqrt ` ( 1 + ( A ^ 2 ) ) ) =/= 0 ) |
| 21 | 6 13 20 | divcan4d | |- ( A e. dom arctan -> ( ( ( exp ` ( _i x. ( arctan ` A ) ) ) x. ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) = ( exp ` ( _i x. ( arctan ` A ) ) ) ) |
| 22 | halfcn | |- ( 1 / 2 ) e. CC |
|
| 23 | 12 16 | logcld | |- ( A e. dom arctan -> ( log ` ( 1 + ( A ^ 2 ) ) ) e. CC ) |
| 24 | mulcl | |- ( ( ( 1 / 2 ) e. CC /\ ( log ` ( 1 + ( A ^ 2 ) ) ) e. CC ) -> ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) e. CC ) |
|
| 25 | 22 23 24 | sylancr | |- ( A e. dom arctan -> ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) e. CC ) |
| 26 | efadd | |- ( ( ( _i x. ( arctan ` A ) ) e. CC /\ ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) e. CC ) -> ( exp ` ( ( _i x. ( arctan ` A ) ) + ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) ) = ( ( exp ` ( _i x. ( arctan ` A ) ) ) x. ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) ) ) |
|
| 27 | 4 25 26 | syl2anc | |- ( A e. dom arctan -> ( exp ` ( ( _i x. ( arctan ` A ) ) + ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) ) = ( ( exp ` ( _i x. ( arctan ` A ) ) ) x. ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) ) ) |
| 28 | 2cn | |- 2 e. CC |
|
| 29 | 28 | a1i | |- ( A e. dom arctan -> 2 e. CC ) |
| 30 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 31 | 1 9 30 | sylancr | |- ( A e. dom arctan -> ( _i x. A ) e. CC ) |
| 32 | addcl | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) |
|
| 33 | 7 31 32 | sylancr | |- ( A e. dom arctan -> ( 1 + ( _i x. A ) ) e. CC ) |
| 34 | 8 | simp3bi | |- ( A e. dom arctan -> ( 1 + ( _i x. A ) ) =/= 0 ) |
| 35 | 33 34 | logcld | |- ( A e. dom arctan -> ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) |
| 36 | 29 35 4 | subdid | |- ( A e. dom arctan -> ( 2 x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( _i x. ( arctan ` A ) ) ) ) = ( ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( 2 x. ( _i x. ( arctan ` A ) ) ) ) ) |
| 37 | atanval | |- ( A e. dom arctan -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
|
| 38 | 37 | oveq2d | |- ( A e. dom arctan -> ( ( 2 x. _i ) x. ( arctan ` A ) ) = ( ( 2 x. _i ) x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
| 39 | 1 | a1i | |- ( A e. dom arctan -> _i e. CC ) |
| 40 | 29 39 2 | mulassd | |- ( A e. dom arctan -> ( ( 2 x. _i ) x. ( arctan ` A ) ) = ( 2 x. ( _i x. ( arctan ` A ) ) ) ) |
| 41 | halfcl | |- ( _i e. CC -> ( _i / 2 ) e. CC ) |
|
| 42 | 1 41 | ax-mp | |- ( _i / 2 ) e. CC |
| 43 | 28 1 42 | mulassi | |- ( ( 2 x. _i ) x. ( _i / 2 ) ) = ( 2 x. ( _i x. ( _i / 2 ) ) ) |
| 44 | 28 1 42 | mul12i | |- ( 2 x. ( _i x. ( _i / 2 ) ) ) = ( _i x. ( 2 x. ( _i / 2 ) ) ) |
| 45 | 2ne0 | |- 2 =/= 0 |
|
| 46 | 1 28 45 | divcan2i | |- ( 2 x. ( _i / 2 ) ) = _i |
| 47 | 46 | oveq2i | |- ( _i x. ( 2 x. ( _i / 2 ) ) ) = ( _i x. _i ) |
| 48 | ixi | |- ( _i x. _i ) = -u 1 |
|
| 49 | 47 48 | eqtri | |- ( _i x. ( 2 x. ( _i / 2 ) ) ) = -u 1 |
| 50 | 43 44 49 | 3eqtri | |- ( ( 2 x. _i ) x. ( _i / 2 ) ) = -u 1 |
| 51 | 50 | oveq1i | |- ( ( ( 2 x. _i ) x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( -u 1 x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 52 | subcl | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) |
|
| 53 | 7 31 52 | sylancr | |- ( A e. dom arctan -> ( 1 - ( _i x. A ) ) e. CC ) |
| 54 | 8 | simp2bi | |- ( A e. dom arctan -> ( 1 - ( _i x. A ) ) =/= 0 ) |
| 55 | 53 54 | logcld | |- ( A e. dom arctan -> ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) |
| 56 | 55 35 | subcld | |- ( A e. dom arctan -> ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) |
| 57 | 56 | mulm1d | |- ( A e. dom arctan -> ( -u 1 x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 58 | 51 57 | eqtrid | |- ( A e. dom arctan -> ( ( ( 2 x. _i ) x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 59 | 2mulicn | |- ( 2 x. _i ) e. CC |
|
| 60 | 59 | a1i | |- ( A e. dom arctan -> ( 2 x. _i ) e. CC ) |
| 61 | 42 | a1i | |- ( A e. dom arctan -> ( _i / 2 ) e. CC ) |
| 62 | 60 61 56 | mulassd | |- ( A e. dom arctan -> ( ( ( 2 x. _i ) x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( 2 x. _i ) x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
| 63 | 55 35 | negsubdi2d | |- ( A e. dom arctan -> -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
| 64 | 58 62 63 | 3eqtr3d | |- ( A e. dom arctan -> ( ( 2 x. _i ) x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
| 65 | 38 40 64 | 3eqtr3d | |- ( A e. dom arctan -> ( 2 x. ( _i x. ( arctan ` A ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
| 66 | 65 | oveq2d | |- ( A e. dom arctan -> ( ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( 2 x. ( _i x. ( arctan ` A ) ) ) ) = ( ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 67 | mulcl | |- ( ( 2 e. CC /\ ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) -> ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) |
|
| 68 | 28 35 67 | sylancr | |- ( A e. dom arctan -> ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) |
| 69 | 68 35 55 | subsubd | |- ( A e. dom arctan -> ( ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( ( ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
| 70 | 35 | 2timesd | |- ( A e. dom arctan -> ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 71 | 35 35 70 | mvrladdd | |- ( A e. dom arctan -> ( ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) = ( log ` ( 1 + ( _i x. A ) ) ) ) |
| 72 | 71 | oveq1d | |- ( A e. dom arctan -> ( ( ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
| 73 | atanlogadd | |- ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) |
|
| 74 | logef | |- ( ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log -> ( log ` ( exp ` ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
|
| 75 | 73 74 | syl | |- ( A e. dom arctan -> ( log ` ( exp ` ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
| 76 | efadd | |- ( ( ( log ` ( 1 + ( _i x. A ) ) ) e. CC /\ ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) -> ( exp ` ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) x. ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
|
| 77 | 35 55 76 | syl2anc | |- ( A e. dom arctan -> ( exp ` ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) x. ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 78 | eflog | |- ( ( ( 1 + ( _i x. A ) ) e. CC /\ ( 1 + ( _i x. A ) ) =/= 0 ) -> ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) = ( 1 + ( _i x. A ) ) ) |
|
| 79 | 33 34 78 | syl2anc | |- ( A e. dom arctan -> ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) = ( 1 + ( _i x. A ) ) ) |
| 80 | eflog | |- ( ( ( 1 - ( _i x. A ) ) e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 ) -> ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) = ( 1 - ( _i x. A ) ) ) |
|
| 81 | 53 54 80 | syl2anc | |- ( A e. dom arctan -> ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) = ( 1 - ( _i x. A ) ) ) |
| 82 | 79 81 | oveq12d | |- ( A e. dom arctan -> ( ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) x. ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( ( 1 + ( _i x. A ) ) x. ( 1 - ( _i x. A ) ) ) ) |
| 83 | sq1 | |- ( 1 ^ 2 ) = 1 |
|
| 84 | 83 | a1i | |- ( A e. dom arctan -> ( 1 ^ 2 ) = 1 ) |
| 85 | sqmul | |- ( ( _i e. CC /\ A e. CC ) -> ( ( _i x. A ) ^ 2 ) = ( ( _i ^ 2 ) x. ( A ^ 2 ) ) ) |
|
| 86 | 1 9 85 | sylancr | |- ( A e. dom arctan -> ( ( _i x. A ) ^ 2 ) = ( ( _i ^ 2 ) x. ( A ^ 2 ) ) ) |
| 87 | i2 | |- ( _i ^ 2 ) = -u 1 |
|
| 88 | 87 | oveq1i | |- ( ( _i ^ 2 ) x. ( A ^ 2 ) ) = ( -u 1 x. ( A ^ 2 ) ) |
| 89 | 10 | mulm1d | |- ( A e. dom arctan -> ( -u 1 x. ( A ^ 2 ) ) = -u ( A ^ 2 ) ) |
| 90 | 88 89 | eqtrid | |- ( A e. dom arctan -> ( ( _i ^ 2 ) x. ( A ^ 2 ) ) = -u ( A ^ 2 ) ) |
| 91 | 86 90 | eqtrd | |- ( A e. dom arctan -> ( ( _i x. A ) ^ 2 ) = -u ( A ^ 2 ) ) |
| 92 | 84 91 | oveq12d | |- ( A e. dom arctan -> ( ( 1 ^ 2 ) - ( ( _i x. A ) ^ 2 ) ) = ( 1 - -u ( A ^ 2 ) ) ) |
| 93 | subsq | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( ( 1 ^ 2 ) - ( ( _i x. A ) ^ 2 ) ) = ( ( 1 + ( _i x. A ) ) x. ( 1 - ( _i x. A ) ) ) ) |
|
| 94 | 7 31 93 | sylancr | |- ( A e. dom arctan -> ( ( 1 ^ 2 ) - ( ( _i x. A ) ^ 2 ) ) = ( ( 1 + ( _i x. A ) ) x. ( 1 - ( _i x. A ) ) ) ) |
| 95 | subneg | |- ( ( 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( 1 - -u ( A ^ 2 ) ) = ( 1 + ( A ^ 2 ) ) ) |
|
| 96 | 7 10 95 | sylancr | |- ( A e. dom arctan -> ( 1 - -u ( A ^ 2 ) ) = ( 1 + ( A ^ 2 ) ) ) |
| 97 | 92 94 96 | 3eqtr3d | |- ( A e. dom arctan -> ( ( 1 + ( _i x. A ) ) x. ( 1 - ( _i x. A ) ) ) = ( 1 + ( A ^ 2 ) ) ) |
| 98 | 77 82 97 | 3eqtrd | |- ( A e. dom arctan -> ( exp ` ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( 1 + ( A ^ 2 ) ) ) |
| 99 | 98 | fveq2d | |- ( A e. dom arctan -> ( log ` ( exp ` ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) = ( log ` ( 1 + ( A ^ 2 ) ) ) ) |
| 100 | 75 99 | eqtr3d | |- ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) = ( log ` ( 1 + ( A ^ 2 ) ) ) ) |
| 101 | 69 72 100 | 3eqtrd | |- ( A e. dom arctan -> ( ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( log ` ( 1 + ( A ^ 2 ) ) ) ) |
| 102 | 36 66 101 | 3eqtrd | |- ( A e. dom arctan -> ( 2 x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( _i x. ( arctan ` A ) ) ) ) = ( log ` ( 1 + ( A ^ 2 ) ) ) ) |
| 103 | 102 | oveq1d | |- ( A e. dom arctan -> ( ( 2 x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( _i x. ( arctan ` A ) ) ) ) / 2 ) = ( ( log ` ( 1 + ( A ^ 2 ) ) ) / 2 ) ) |
| 104 | 35 4 | subcld | |- ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) - ( _i x. ( arctan ` A ) ) ) e. CC ) |
| 105 | 45 | a1i | |- ( A e. dom arctan -> 2 =/= 0 ) |
| 106 | 104 29 105 | divcan3d | |- ( A e. dom arctan -> ( ( 2 x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( _i x. ( arctan ` A ) ) ) ) / 2 ) = ( ( log ` ( 1 + ( _i x. A ) ) ) - ( _i x. ( arctan ` A ) ) ) ) |
| 107 | 23 29 105 | divrec2d | |- ( A e. dom arctan -> ( ( log ` ( 1 + ( A ^ 2 ) ) ) / 2 ) = ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) |
| 108 | 103 106 107 | 3eqtr3d | |- ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) - ( _i x. ( arctan ` A ) ) ) = ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) |
| 109 | 35 4 25 | subaddd | |- ( A e. dom arctan -> ( ( ( log ` ( 1 + ( _i x. A ) ) ) - ( _i x. ( arctan ` A ) ) ) = ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) <-> ( ( _i x. ( arctan ` A ) ) + ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) = ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 110 | 108 109 | mpbid | |- ( A e. dom arctan -> ( ( _i x. ( arctan ` A ) ) + ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) = ( log ` ( 1 + ( _i x. A ) ) ) ) |
| 111 | 110 | fveq2d | |- ( A e. dom arctan -> ( exp ` ( ( _i x. ( arctan ` A ) ) + ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) ) = ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 112 | 27 111 | eqtr3d | |- ( A e. dom arctan -> ( ( exp ` ( _i x. ( arctan ` A ) ) ) x. ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) ) = ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 113 | 22 | a1i | |- ( A e. dom arctan -> ( 1 / 2 ) e. CC ) |
| 114 | 12 16 113 | cxpefd | |- ( A e. dom arctan -> ( ( 1 + ( A ^ 2 ) ) ^c ( 1 / 2 ) ) = ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) ) |
| 115 | cxpsqrt | |- ( ( 1 + ( A ^ 2 ) ) e. CC -> ( ( 1 + ( A ^ 2 ) ) ^c ( 1 / 2 ) ) = ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) |
|
| 116 | 12 115 | syl | |- ( A e. dom arctan -> ( ( 1 + ( A ^ 2 ) ) ^c ( 1 / 2 ) ) = ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) |
| 117 | 114 116 | eqtr3d | |- ( A e. dom arctan -> ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) = ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) |
| 118 | 117 | oveq2d | |- ( A e. dom arctan -> ( ( exp ` ( _i x. ( arctan ` A ) ) ) x. ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) ) = ( ( exp ` ( _i x. ( arctan ` A ) ) ) x. ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) |
| 119 | 112 118 79 | 3eqtr3d | |- ( A e. dom arctan -> ( ( exp ` ( _i x. ( arctan ` A ) ) ) x. ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) = ( 1 + ( _i x. A ) ) ) |
| 120 | 119 | oveq1d | |- ( A e. dom arctan -> ( ( ( exp ` ( _i x. ( arctan ` A ) ) ) x. ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) = ( ( 1 + ( _i x. A ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) |
| 121 | 21 120 | eqtr3d | |- ( A e. dom arctan -> ( exp ` ( _i x. ( arctan ` A ) ) ) = ( ( 1 + ( _i x. A ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) |