This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2efiatan | |- ( A e. dom arctan -> ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atanval | |- ( A e. dom arctan -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
|
| 2 | 1 | oveq2d | |- ( A e. dom arctan -> ( ( 2 x. _i ) x. ( arctan ` A ) ) = ( ( 2 x. _i ) x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
| 3 | 2cn | |- 2 e. CC |
|
| 4 | 3 | a1i | |- ( A e. dom arctan -> 2 e. CC ) |
| 5 | ax-icn | |- _i e. CC |
|
| 6 | 5 | a1i | |- ( A e. dom arctan -> _i e. CC ) |
| 7 | atancl | |- ( A e. dom arctan -> ( arctan ` A ) e. CC ) |
|
| 8 | 4 6 7 | mulassd | |- ( A e. dom arctan -> ( ( 2 x. _i ) x. ( arctan ` A ) ) = ( 2 x. ( _i x. ( arctan ` A ) ) ) ) |
| 9 | halfcl | |- ( _i e. CC -> ( _i / 2 ) e. CC ) |
|
| 10 | 5 9 | ax-mp | |- ( _i / 2 ) e. CC |
| 11 | 3 5 10 | mulassi | |- ( ( 2 x. _i ) x. ( _i / 2 ) ) = ( 2 x. ( _i x. ( _i / 2 ) ) ) |
| 12 | 3 5 10 | mul12i | |- ( 2 x. ( _i x. ( _i / 2 ) ) ) = ( _i x. ( 2 x. ( _i / 2 ) ) ) |
| 13 | 2ne0 | |- 2 =/= 0 |
|
| 14 | 5 3 13 | divcan2i | |- ( 2 x. ( _i / 2 ) ) = _i |
| 15 | 14 | oveq2i | |- ( _i x. ( 2 x. ( _i / 2 ) ) ) = ( _i x. _i ) |
| 16 | ixi | |- ( _i x. _i ) = -u 1 |
|
| 17 | 15 16 | eqtri | |- ( _i x. ( 2 x. ( _i / 2 ) ) ) = -u 1 |
| 18 | 11 12 17 | 3eqtri | |- ( ( 2 x. _i ) x. ( _i / 2 ) ) = -u 1 |
| 19 | 18 | oveq1i | |- ( ( ( 2 x. _i ) x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( -u 1 x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 20 | ax-1cn | |- 1 e. CC |
|
| 21 | atandm2 | |- ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) |
|
| 22 | 21 | simp1bi | |- ( A e. dom arctan -> A e. CC ) |
| 23 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 24 | 5 22 23 | sylancr | |- ( A e. dom arctan -> ( _i x. A ) e. CC ) |
| 25 | subcl | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) |
|
| 26 | 20 24 25 | sylancr | |- ( A e. dom arctan -> ( 1 - ( _i x. A ) ) e. CC ) |
| 27 | 21 | simp2bi | |- ( A e. dom arctan -> ( 1 - ( _i x. A ) ) =/= 0 ) |
| 28 | 26 27 | logcld | |- ( A e. dom arctan -> ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) |
| 29 | addcl | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) |
|
| 30 | 20 24 29 | sylancr | |- ( A e. dom arctan -> ( 1 + ( _i x. A ) ) e. CC ) |
| 31 | 21 | simp3bi | |- ( A e. dom arctan -> ( 1 + ( _i x. A ) ) =/= 0 ) |
| 32 | 30 31 | logcld | |- ( A e. dom arctan -> ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) |
| 33 | 28 32 | subcld | |- ( A e. dom arctan -> ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) |
| 34 | 33 | mulm1d | |- ( A e. dom arctan -> ( -u 1 x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 35 | 19 34 | eqtrid | |- ( A e. dom arctan -> ( ( ( 2 x. _i ) x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 36 | 2mulicn | |- ( 2 x. _i ) e. CC |
|
| 37 | 36 | a1i | |- ( A e. dom arctan -> ( 2 x. _i ) e. CC ) |
| 38 | 10 | a1i | |- ( A e. dom arctan -> ( _i / 2 ) e. CC ) |
| 39 | 37 38 33 | mulassd | |- ( A e. dom arctan -> ( ( ( 2 x. _i ) x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( 2 x. _i ) x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
| 40 | 28 32 | negsubdi2d | |- ( A e. dom arctan -> -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
| 41 | 35 39 40 | 3eqtr3d | |- ( A e. dom arctan -> ( ( 2 x. _i ) x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
| 42 | 2 8 41 | 3eqtr3d | |- ( A e. dom arctan -> ( 2 x. ( _i x. ( arctan ` A ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
| 43 | 42 | fveq2d | |- ( A e. dom arctan -> ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) = ( exp ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 44 | efsub | |- ( ( ( log ` ( 1 + ( _i x. A ) ) ) e. CC /\ ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) -> ( exp ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) / ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
|
| 45 | 32 28 44 | syl2anc | |- ( A e. dom arctan -> ( exp ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) / ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 46 | eflog | |- ( ( ( 1 + ( _i x. A ) ) e. CC /\ ( 1 + ( _i x. A ) ) =/= 0 ) -> ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) = ( 1 + ( _i x. A ) ) ) |
|
| 47 | 30 31 46 | syl2anc | |- ( A e. dom arctan -> ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) = ( 1 + ( _i x. A ) ) ) |
| 48 | eflog | |- ( ( ( 1 - ( _i x. A ) ) e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 ) -> ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) = ( 1 - ( _i x. A ) ) ) |
|
| 49 | 26 27 48 | syl2anc | |- ( A e. dom arctan -> ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) = ( 1 - ( _i x. A ) ) ) |
| 50 | 47 49 | oveq12d | |- ( A e. dom arctan -> ( ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) / ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( ( 1 + ( _i x. A ) ) / ( 1 - ( _i x. A ) ) ) ) |
| 51 | negsub | |- ( ( _i e. CC /\ A e. CC ) -> ( _i + -u A ) = ( _i - A ) ) |
|
| 52 | 5 22 51 | sylancr | |- ( A e. dom arctan -> ( _i + -u A ) = ( _i - A ) ) |
| 53 | 6 | mulridd | |- ( A e. dom arctan -> ( _i x. 1 ) = _i ) |
| 54 | 16 | oveq1i | |- ( ( _i x. _i ) x. A ) = ( -u 1 x. A ) |
| 55 | 6 6 22 | mulassd | |- ( A e. dom arctan -> ( ( _i x. _i ) x. A ) = ( _i x. ( _i x. A ) ) ) |
| 56 | 22 | mulm1d | |- ( A e. dom arctan -> ( -u 1 x. A ) = -u A ) |
| 57 | 54 55 56 | 3eqtr3a | |- ( A e. dom arctan -> ( _i x. ( _i x. A ) ) = -u A ) |
| 58 | 53 57 | oveq12d | |- ( A e. dom arctan -> ( ( _i x. 1 ) + ( _i x. ( _i x. A ) ) ) = ( _i + -u A ) ) |
| 59 | 6 22 6 | pnpcan2d | |- ( A e. dom arctan -> ( ( _i + _i ) - ( A + _i ) ) = ( _i - A ) ) |
| 60 | 52 58 59 | 3eqtr4d | |- ( A e. dom arctan -> ( ( _i x. 1 ) + ( _i x. ( _i x. A ) ) ) = ( ( _i + _i ) - ( A + _i ) ) ) |
| 61 | 20 | a1i | |- ( A e. dom arctan -> 1 e. CC ) |
| 62 | 6 61 24 | adddid | |- ( A e. dom arctan -> ( _i x. ( 1 + ( _i x. A ) ) ) = ( ( _i x. 1 ) + ( _i x. ( _i x. A ) ) ) ) |
| 63 | 6 | 2timesd | |- ( A e. dom arctan -> ( 2 x. _i ) = ( _i + _i ) ) |
| 64 | 63 | oveq1d | |- ( A e. dom arctan -> ( ( 2 x. _i ) - ( A + _i ) ) = ( ( _i + _i ) - ( A + _i ) ) ) |
| 65 | 60 62 64 | 3eqtr4d | |- ( A e. dom arctan -> ( _i x. ( 1 + ( _i x. A ) ) ) = ( ( 2 x. _i ) - ( A + _i ) ) ) |
| 66 | 6 61 24 | subdid | |- ( A e. dom arctan -> ( _i x. ( 1 - ( _i x. A ) ) ) = ( ( _i x. 1 ) - ( _i x. ( _i x. A ) ) ) ) |
| 67 | 53 57 | oveq12d | |- ( A e. dom arctan -> ( ( _i x. 1 ) - ( _i x. ( _i x. A ) ) ) = ( _i - -u A ) ) |
| 68 | subneg | |- ( ( _i e. CC /\ A e. CC ) -> ( _i - -u A ) = ( _i + A ) ) |
|
| 69 | 5 22 68 | sylancr | |- ( A e. dom arctan -> ( _i - -u A ) = ( _i + A ) ) |
| 70 | 67 69 | eqtrd | |- ( A e. dom arctan -> ( ( _i x. 1 ) - ( _i x. ( _i x. A ) ) ) = ( _i + A ) ) |
| 71 | addcom | |- ( ( _i e. CC /\ A e. CC ) -> ( _i + A ) = ( A + _i ) ) |
|
| 72 | 5 22 71 | sylancr | |- ( A e. dom arctan -> ( _i + A ) = ( A + _i ) ) |
| 73 | 66 70 72 | 3eqtrd | |- ( A e. dom arctan -> ( _i x. ( 1 - ( _i x. A ) ) ) = ( A + _i ) ) |
| 74 | 65 73 | oveq12d | |- ( A e. dom arctan -> ( ( _i x. ( 1 + ( _i x. A ) ) ) / ( _i x. ( 1 - ( _i x. A ) ) ) ) = ( ( ( 2 x. _i ) - ( A + _i ) ) / ( A + _i ) ) ) |
| 75 | ine0 | |- _i =/= 0 |
|
| 76 | 75 | a1i | |- ( A e. dom arctan -> _i =/= 0 ) |
| 77 | 30 26 6 27 76 | divcan5d | |- ( A e. dom arctan -> ( ( _i x. ( 1 + ( _i x. A ) ) ) / ( _i x. ( 1 - ( _i x. A ) ) ) ) = ( ( 1 + ( _i x. A ) ) / ( 1 - ( _i x. A ) ) ) ) |
| 78 | addcl | |- ( ( A e. CC /\ _i e. CC ) -> ( A + _i ) e. CC ) |
|
| 79 | 22 5 78 | sylancl | |- ( A e. dom arctan -> ( A + _i ) e. CC ) |
| 80 | subneg | |- ( ( A e. CC /\ _i e. CC ) -> ( A - -u _i ) = ( A + _i ) ) |
|
| 81 | 22 5 80 | sylancl | |- ( A e. dom arctan -> ( A - -u _i ) = ( A + _i ) ) |
| 82 | atandm | |- ( A e. dom arctan <-> ( A e. CC /\ A =/= -u _i /\ A =/= _i ) ) |
|
| 83 | 82 | simp2bi | |- ( A e. dom arctan -> A =/= -u _i ) |
| 84 | negicn | |- -u _i e. CC |
|
| 85 | subeq0 | |- ( ( A e. CC /\ -u _i e. CC ) -> ( ( A - -u _i ) = 0 <-> A = -u _i ) ) |
|
| 86 | 85 | necon3bid | |- ( ( A e. CC /\ -u _i e. CC ) -> ( ( A - -u _i ) =/= 0 <-> A =/= -u _i ) ) |
| 87 | 22 84 86 | sylancl | |- ( A e. dom arctan -> ( ( A - -u _i ) =/= 0 <-> A =/= -u _i ) ) |
| 88 | 83 87 | mpbird | |- ( A e. dom arctan -> ( A - -u _i ) =/= 0 ) |
| 89 | 81 88 | eqnetrrd | |- ( A e. dom arctan -> ( A + _i ) =/= 0 ) |
| 90 | 37 79 79 89 | divsubdird | |- ( A e. dom arctan -> ( ( ( 2 x. _i ) - ( A + _i ) ) / ( A + _i ) ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - ( ( A + _i ) / ( A + _i ) ) ) ) |
| 91 | 74 77 90 | 3eqtr3d | |- ( A e. dom arctan -> ( ( 1 + ( _i x. A ) ) / ( 1 - ( _i x. A ) ) ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - ( ( A + _i ) / ( A + _i ) ) ) ) |
| 92 | 79 89 | dividd | |- ( A e. dom arctan -> ( ( A + _i ) / ( A + _i ) ) = 1 ) |
| 93 | 92 | oveq2d | |- ( A e. dom arctan -> ( ( ( 2 x. _i ) / ( A + _i ) ) - ( ( A + _i ) / ( A + _i ) ) ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) ) |
| 94 | 50 91 93 | 3eqtrd | |- ( A e. dom arctan -> ( ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) / ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) ) |
| 95 | 43 45 94 | 3eqtrd | |- ( A e. dom arctan -> ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) ) |