This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The start and end of any extension sequence are related (i.e. evaluate to the same element of the quotient group to be created). (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| efgval.r | |- .~ = ( ~FG ` I ) |
||
| efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
||
| efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
||
| efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
||
| efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
||
| Assertion | efgsrel | |- ( F e. dom S -> ( F ` 0 ) .~ ( S ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 2 | efgval.r | |- .~ = ( ~FG ` I ) |
|
| 3 | efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 4 | efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
|
| 5 | efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
|
| 6 | efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
|
| 7 | 1 2 3 4 5 6 | efgsdm | |- ( F e. dom S <-> ( F e. ( Word W \ { (/) } ) /\ ( F ` 0 ) e. D /\ A. a e. ( 1 ..^ ( # ` F ) ) ( F ` a ) e. ran ( T ` ( F ` ( a - 1 ) ) ) ) ) |
| 8 | 7 | simp1bi | |- ( F e. dom S -> F e. ( Word W \ { (/) } ) ) |
| 9 | eldifsn | |- ( F e. ( Word W \ { (/) } ) <-> ( F e. Word W /\ F =/= (/) ) ) |
|
| 10 | lennncl | |- ( ( F e. Word W /\ F =/= (/) ) -> ( # ` F ) e. NN ) |
|
| 11 | 9 10 | sylbi | |- ( F e. ( Word W \ { (/) } ) -> ( # ` F ) e. NN ) |
| 12 | fzo0end | |- ( ( # ` F ) e. NN -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
|
| 13 | 8 11 12 | 3syl | |- ( F e. dom S -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
| 14 | nnm1nn0 | |- ( ( # ` F ) e. NN -> ( ( # ` F ) - 1 ) e. NN0 ) |
|
| 15 | 8 11 14 | 3syl | |- ( F e. dom S -> ( ( # ` F ) - 1 ) e. NN0 ) |
| 16 | eleq1 | |- ( a = 0 -> ( a e. ( 0 ..^ ( # ` F ) ) <-> 0 e. ( 0 ..^ ( # ` F ) ) ) ) |
|
| 17 | fveq2 | |- ( a = 0 -> ( F ` a ) = ( F ` 0 ) ) |
|
| 18 | 17 | breq2d | |- ( a = 0 -> ( ( F ` 0 ) .~ ( F ` a ) <-> ( F ` 0 ) .~ ( F ` 0 ) ) ) |
| 19 | 16 18 | imbi12d | |- ( a = 0 -> ( ( a e. ( 0 ..^ ( # ` F ) ) -> ( F ` 0 ) .~ ( F ` a ) ) <-> ( 0 e. ( 0 ..^ ( # ` F ) ) -> ( F ` 0 ) .~ ( F ` 0 ) ) ) ) |
| 20 | 19 | imbi2d | |- ( a = 0 -> ( ( F e. dom S -> ( a e. ( 0 ..^ ( # ` F ) ) -> ( F ` 0 ) .~ ( F ` a ) ) ) <-> ( F e. dom S -> ( 0 e. ( 0 ..^ ( # ` F ) ) -> ( F ` 0 ) .~ ( F ` 0 ) ) ) ) ) |
| 21 | eleq1 | |- ( a = i -> ( a e. ( 0 ..^ ( # ` F ) ) <-> i e. ( 0 ..^ ( # ` F ) ) ) ) |
|
| 22 | fveq2 | |- ( a = i -> ( F ` a ) = ( F ` i ) ) |
|
| 23 | 22 | breq2d | |- ( a = i -> ( ( F ` 0 ) .~ ( F ` a ) <-> ( F ` 0 ) .~ ( F ` i ) ) ) |
| 24 | 21 23 | imbi12d | |- ( a = i -> ( ( a e. ( 0 ..^ ( # ` F ) ) -> ( F ` 0 ) .~ ( F ` a ) ) <-> ( i e. ( 0 ..^ ( # ` F ) ) -> ( F ` 0 ) .~ ( F ` i ) ) ) ) |
| 25 | 24 | imbi2d | |- ( a = i -> ( ( F e. dom S -> ( a e. ( 0 ..^ ( # ` F ) ) -> ( F ` 0 ) .~ ( F ` a ) ) ) <-> ( F e. dom S -> ( i e. ( 0 ..^ ( # ` F ) ) -> ( F ` 0 ) .~ ( F ` i ) ) ) ) ) |
| 26 | eleq1 | |- ( a = ( i + 1 ) -> ( a e. ( 0 ..^ ( # ` F ) ) <-> ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) ) ) |
|
| 27 | fveq2 | |- ( a = ( i + 1 ) -> ( F ` a ) = ( F ` ( i + 1 ) ) ) |
|
| 28 | 27 | breq2d | |- ( a = ( i + 1 ) -> ( ( F ` 0 ) .~ ( F ` a ) <-> ( F ` 0 ) .~ ( F ` ( i + 1 ) ) ) ) |
| 29 | 26 28 | imbi12d | |- ( a = ( i + 1 ) -> ( ( a e. ( 0 ..^ ( # ` F ) ) -> ( F ` 0 ) .~ ( F ` a ) ) <-> ( ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) -> ( F ` 0 ) .~ ( F ` ( i + 1 ) ) ) ) ) |
| 30 | 29 | imbi2d | |- ( a = ( i + 1 ) -> ( ( F e. dom S -> ( a e. ( 0 ..^ ( # ` F ) ) -> ( F ` 0 ) .~ ( F ` a ) ) ) <-> ( F e. dom S -> ( ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) -> ( F ` 0 ) .~ ( F ` ( i + 1 ) ) ) ) ) ) |
| 31 | eleq1 | |- ( a = ( ( # ` F ) - 1 ) -> ( a e. ( 0 ..^ ( # ` F ) ) <-> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) ) |
|
| 32 | fveq2 | |- ( a = ( ( # ` F ) - 1 ) -> ( F ` a ) = ( F ` ( ( # ` F ) - 1 ) ) ) |
|
| 33 | 32 | breq2d | |- ( a = ( ( # ` F ) - 1 ) -> ( ( F ` 0 ) .~ ( F ` a ) <-> ( F ` 0 ) .~ ( F ` ( ( # ` F ) - 1 ) ) ) ) |
| 34 | 31 33 | imbi12d | |- ( a = ( ( # ` F ) - 1 ) -> ( ( a e. ( 0 ..^ ( # ` F ) ) -> ( F ` 0 ) .~ ( F ` a ) ) <-> ( ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) -> ( F ` 0 ) .~ ( F ` ( ( # ` F ) - 1 ) ) ) ) ) |
| 35 | 34 | imbi2d | |- ( a = ( ( # ` F ) - 1 ) -> ( ( F e. dom S -> ( a e. ( 0 ..^ ( # ` F ) ) -> ( F ` 0 ) .~ ( F ` a ) ) ) <-> ( F e. dom S -> ( ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) -> ( F ` 0 ) .~ ( F ` ( ( # ` F ) - 1 ) ) ) ) ) ) |
| 36 | 1 2 | efger | |- .~ Er W |
| 37 | 36 | a1i | |- ( ( F e. dom S /\ 0 e. ( 0 ..^ ( # ` F ) ) ) -> .~ Er W ) |
| 38 | eldifi | |- ( F e. ( Word W \ { (/) } ) -> F e. Word W ) |
|
| 39 | wrdf | |- ( F e. Word W -> F : ( 0 ..^ ( # ` F ) ) --> W ) |
|
| 40 | 8 38 39 | 3syl | |- ( F e. dom S -> F : ( 0 ..^ ( # ` F ) ) --> W ) |
| 41 | 40 | ffvelcdmda | |- ( ( F e. dom S /\ 0 e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` 0 ) e. W ) |
| 42 | 37 41 | erref | |- ( ( F e. dom S /\ 0 e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` 0 ) .~ ( F ` 0 ) ) |
| 43 | 42 | ex | |- ( F e. dom S -> ( 0 e. ( 0 ..^ ( # ` F ) ) -> ( F ` 0 ) .~ ( F ` 0 ) ) ) |
| 44 | elnn0uz | |- ( i e. NN0 <-> i e. ( ZZ>= ` 0 ) ) |
|
| 45 | peano2fzor | |- ( ( i e. ( ZZ>= ` 0 ) /\ ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> i e. ( 0 ..^ ( # ` F ) ) ) |
|
| 46 | 44 45 | sylanb | |- ( ( i e. NN0 /\ ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> i e. ( 0 ..^ ( # ` F ) ) ) |
| 47 | 46 | 3adant1 | |- ( ( F e. dom S /\ i e. NN0 /\ ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> i e. ( 0 ..^ ( # ` F ) ) ) |
| 48 | 47 | 3expia | |- ( ( F e. dom S /\ i e. NN0 ) -> ( ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) -> i e. ( 0 ..^ ( # ` F ) ) ) ) |
| 49 | 48 | imim1d | |- ( ( F e. dom S /\ i e. NN0 ) -> ( ( i e. ( 0 ..^ ( # ` F ) ) -> ( F ` 0 ) .~ ( F ` i ) ) -> ( ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) -> ( F ` 0 ) .~ ( F ` i ) ) ) ) |
| 50 | 40 | 3ad2ant1 | |- ( ( F e. dom S /\ i e. NN0 /\ ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> F : ( 0 ..^ ( # ` F ) ) --> W ) |
| 51 | 50 47 | ffvelcdmd | |- ( ( F e. dom S /\ i e. NN0 /\ ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` i ) e. W ) |
| 52 | fvoveq1 | |- ( a = ( i + 1 ) -> ( F ` ( a - 1 ) ) = ( F ` ( ( i + 1 ) - 1 ) ) ) |
|
| 53 | 52 | fveq2d | |- ( a = ( i + 1 ) -> ( T ` ( F ` ( a - 1 ) ) ) = ( T ` ( F ` ( ( i + 1 ) - 1 ) ) ) ) |
| 54 | 53 | rneqd | |- ( a = ( i + 1 ) -> ran ( T ` ( F ` ( a - 1 ) ) ) = ran ( T ` ( F ` ( ( i + 1 ) - 1 ) ) ) ) |
| 55 | 27 54 | eleq12d | |- ( a = ( i + 1 ) -> ( ( F ` a ) e. ran ( T ` ( F ` ( a - 1 ) ) ) <-> ( F ` ( i + 1 ) ) e. ran ( T ` ( F ` ( ( i + 1 ) - 1 ) ) ) ) ) |
| 56 | 7 | simp3bi | |- ( F e. dom S -> A. a e. ( 1 ..^ ( # ` F ) ) ( F ` a ) e. ran ( T ` ( F ` ( a - 1 ) ) ) ) |
| 57 | 56 | 3ad2ant1 | |- ( ( F e. dom S /\ i e. NN0 /\ ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> A. a e. ( 1 ..^ ( # ` F ) ) ( F ` a ) e. ran ( T ` ( F ` ( a - 1 ) ) ) ) |
| 58 | nn0p1nn | |- ( i e. NN0 -> ( i + 1 ) e. NN ) |
|
| 59 | 58 | 3ad2ant2 | |- ( ( F e. dom S /\ i e. NN0 /\ ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ( i + 1 ) e. NN ) |
| 60 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 61 | 59 60 | eleqtrdi | |- ( ( F e. dom S /\ i e. NN0 /\ ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ( i + 1 ) e. ( ZZ>= ` 1 ) ) |
| 62 | elfzolt2b | |- ( ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) -> ( i + 1 ) e. ( ( i + 1 ) ..^ ( # ` F ) ) ) |
|
| 63 | 62 | 3ad2ant3 | |- ( ( F e. dom S /\ i e. NN0 /\ ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ( i + 1 ) e. ( ( i + 1 ) ..^ ( # ` F ) ) ) |
| 64 | elfzo3 | |- ( ( i + 1 ) e. ( 1 ..^ ( # ` F ) ) <-> ( ( i + 1 ) e. ( ZZ>= ` 1 ) /\ ( i + 1 ) e. ( ( i + 1 ) ..^ ( # ` F ) ) ) ) |
|
| 65 | 61 63 64 | sylanbrc | |- ( ( F e. dom S /\ i e. NN0 /\ ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ( i + 1 ) e. ( 1 ..^ ( # ` F ) ) ) |
| 66 | 55 57 65 | rspcdva | |- ( ( F e. dom S /\ i e. NN0 /\ ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` ( i + 1 ) ) e. ran ( T ` ( F ` ( ( i + 1 ) - 1 ) ) ) ) |
| 67 | nn0cn | |- ( i e. NN0 -> i e. CC ) |
|
| 68 | 67 | 3ad2ant2 | |- ( ( F e. dom S /\ i e. NN0 /\ ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> i e. CC ) |
| 69 | ax-1cn | |- 1 e. CC |
|
| 70 | pncan | |- ( ( i e. CC /\ 1 e. CC ) -> ( ( i + 1 ) - 1 ) = i ) |
|
| 71 | 68 69 70 | sylancl | |- ( ( F e. dom S /\ i e. NN0 /\ ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ( ( i + 1 ) - 1 ) = i ) |
| 72 | 71 | fveq2d | |- ( ( F e. dom S /\ i e. NN0 /\ ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` ( ( i + 1 ) - 1 ) ) = ( F ` i ) ) |
| 73 | 72 | fveq2d | |- ( ( F e. dom S /\ i e. NN0 /\ ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ( T ` ( F ` ( ( i + 1 ) - 1 ) ) ) = ( T ` ( F ` i ) ) ) |
| 74 | 73 | rneqd | |- ( ( F e. dom S /\ i e. NN0 /\ ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ran ( T ` ( F ` ( ( i + 1 ) - 1 ) ) ) = ran ( T ` ( F ` i ) ) ) |
| 75 | 66 74 | eleqtrd | |- ( ( F e. dom S /\ i e. NN0 /\ ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` ( i + 1 ) ) e. ran ( T ` ( F ` i ) ) ) |
| 76 | 1 2 3 4 | efgi2 | |- ( ( ( F ` i ) e. W /\ ( F ` ( i + 1 ) ) e. ran ( T ` ( F ` i ) ) ) -> ( F ` i ) .~ ( F ` ( i + 1 ) ) ) |
| 77 | 51 75 76 | syl2anc | |- ( ( F e. dom S /\ i e. NN0 /\ ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` i ) .~ ( F ` ( i + 1 ) ) ) |
| 78 | 36 | a1i | |- ( ( F e. dom S /\ i e. NN0 /\ ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> .~ Er W ) |
| 79 | 78 | ertr | |- ( ( F e. dom S /\ i e. NN0 /\ ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( F ` 0 ) .~ ( F ` i ) /\ ( F ` i ) .~ ( F ` ( i + 1 ) ) ) -> ( F ` 0 ) .~ ( F ` ( i + 1 ) ) ) ) |
| 80 | 77 79 | mpan2d | |- ( ( F e. dom S /\ i e. NN0 /\ ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F ` 0 ) .~ ( F ` i ) -> ( F ` 0 ) .~ ( F ` ( i + 1 ) ) ) ) |
| 81 | 80 | 3expia | |- ( ( F e. dom S /\ i e. NN0 ) -> ( ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) -> ( ( F ` 0 ) .~ ( F ` i ) -> ( F ` 0 ) .~ ( F ` ( i + 1 ) ) ) ) ) |
| 82 | 81 | a2d | |- ( ( F e. dom S /\ i e. NN0 ) -> ( ( ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) -> ( F ` 0 ) .~ ( F ` i ) ) -> ( ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) -> ( F ` 0 ) .~ ( F ` ( i + 1 ) ) ) ) ) |
| 83 | 49 82 | syld | |- ( ( F e. dom S /\ i e. NN0 ) -> ( ( i e. ( 0 ..^ ( # ` F ) ) -> ( F ` 0 ) .~ ( F ` i ) ) -> ( ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) -> ( F ` 0 ) .~ ( F ` ( i + 1 ) ) ) ) ) |
| 84 | 83 | expcom | |- ( i e. NN0 -> ( F e. dom S -> ( ( i e. ( 0 ..^ ( # ` F ) ) -> ( F ` 0 ) .~ ( F ` i ) ) -> ( ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) -> ( F ` 0 ) .~ ( F ` ( i + 1 ) ) ) ) ) ) |
| 85 | 84 | a2d | |- ( i e. NN0 -> ( ( F e. dom S -> ( i e. ( 0 ..^ ( # ` F ) ) -> ( F ` 0 ) .~ ( F ` i ) ) ) -> ( F e. dom S -> ( ( i + 1 ) e. ( 0 ..^ ( # ` F ) ) -> ( F ` 0 ) .~ ( F ` ( i + 1 ) ) ) ) ) ) |
| 86 | 20 25 30 35 43 85 | nn0ind | |- ( ( ( # ` F ) - 1 ) e. NN0 -> ( F e. dom S -> ( ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) -> ( F ` 0 ) .~ ( F ` ( ( # ` F ) - 1 ) ) ) ) ) |
| 87 | 15 86 | mpcom | |- ( F e. dom S -> ( ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) -> ( F ` 0 ) .~ ( F ` ( ( # ` F ) - 1 ) ) ) ) |
| 88 | 13 87 | mpd | |- ( F e. dom S -> ( F ` 0 ) .~ ( F ` ( ( # ` F ) - 1 ) ) ) |
| 89 | 1 2 3 4 5 6 | efgsval | |- ( F e. dom S -> ( S ` F ) = ( F ` ( ( # ` F ) - 1 ) ) ) |
| 90 | 88 89 | breqtrrd | |- ( F e. dom S -> ( F ` 0 ) .~ ( S ` F ) ) |