This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The start and end of any extension sequence are related (i.e. evaluate to the same element of the quotient group to be created). (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | ||
| efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | ||
| efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | ||
| efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | ||
| Assertion | efgsrel | ⊢ ( 𝐹 ∈ dom 𝑆 → ( 𝐹 ‘ 0 ) ∼ ( 𝑆 ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 2 | efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 3 | efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| 4 | efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | |
| 5 | efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | |
| 6 | efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | |
| 7 | 1 2 3 4 5 6 | efgsdm | ⊢ ( 𝐹 ∈ dom 𝑆 ↔ ( 𝐹 ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑎 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑎 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑎 − 1 ) ) ) ) ) |
| 8 | 7 | simp1bi | ⊢ ( 𝐹 ∈ dom 𝑆 → 𝐹 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 9 | eldifsn | ⊢ ( 𝐹 ∈ ( Word 𝑊 ∖ { ∅ } ) ↔ ( 𝐹 ∈ Word 𝑊 ∧ 𝐹 ≠ ∅ ) ) | |
| 10 | lennncl | ⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 𝐹 ≠ ∅ ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) | |
| 11 | 9 10 | sylbi | ⊢ ( 𝐹 ∈ ( Word 𝑊 ∖ { ∅ } ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) |
| 12 | fzo0end | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 13 | 8 11 12 | 3syl | ⊢ ( 𝐹 ∈ dom 𝑆 → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 14 | nnm1nn0 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ0 ) | |
| 15 | 8 11 14 | 3syl | ⊢ ( 𝐹 ∈ dom 𝑆 → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ0 ) |
| 16 | eleq1 | ⊢ ( 𝑎 = 0 → ( 𝑎 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ↔ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 17 | fveq2 | ⊢ ( 𝑎 = 0 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 0 ) ) | |
| 18 | 17 | breq2d | ⊢ ( 𝑎 = 0 → ( ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ 𝑎 ) ↔ ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ 0 ) ) ) |
| 19 | 16 18 | imbi12d | ⊢ ( 𝑎 = 0 → ( ( 𝑎 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ 𝑎 ) ) ↔ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ 0 ) ) ) ) |
| 20 | 19 | imbi2d | ⊢ ( 𝑎 = 0 → ( ( 𝐹 ∈ dom 𝑆 → ( 𝑎 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ 𝑎 ) ) ) ↔ ( 𝐹 ∈ dom 𝑆 → ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ 0 ) ) ) ) ) |
| 21 | eleq1 | ⊢ ( 𝑎 = 𝑖 → ( 𝑎 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ↔ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 22 | fveq2 | ⊢ ( 𝑎 = 𝑖 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑖 ) ) | |
| 23 | 22 | breq2d | ⊢ ( 𝑎 = 𝑖 → ( ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ 𝑎 ) ↔ ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ 𝑖 ) ) ) |
| 24 | 21 23 | imbi12d | ⊢ ( 𝑎 = 𝑖 → ( ( 𝑎 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ 𝑎 ) ) ↔ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 25 | 24 | imbi2d | ⊢ ( 𝑎 = 𝑖 → ( ( 𝐹 ∈ dom 𝑆 → ( 𝑎 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ 𝑎 ) ) ) ↔ ( 𝐹 ∈ dom 𝑆 → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ 𝑖 ) ) ) ) ) |
| 26 | eleq1 | ⊢ ( 𝑎 = ( 𝑖 + 1 ) → ( 𝑎 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ↔ ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 27 | fveq2 | ⊢ ( 𝑎 = ( 𝑖 + 1 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ ( 𝑖 + 1 ) ) ) | |
| 28 | 27 | breq2d | ⊢ ( 𝑎 = ( 𝑖 + 1 ) → ( ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ 𝑎 ) ↔ ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ ( 𝑖 + 1 ) ) ) ) |
| 29 | 26 28 | imbi12d | ⊢ ( 𝑎 = ( 𝑖 + 1 ) → ( ( 𝑎 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ 𝑎 ) ) ↔ ( ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 30 | 29 | imbi2d | ⊢ ( 𝑎 = ( 𝑖 + 1 ) → ( ( 𝐹 ∈ dom 𝑆 → ( 𝑎 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ 𝑎 ) ) ) ↔ ( 𝐹 ∈ dom 𝑆 → ( ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 31 | eleq1 | ⊢ ( 𝑎 = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( 𝑎 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ↔ ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 32 | fveq2 | ⊢ ( 𝑎 = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) | |
| 33 | 32 | breq2d | ⊢ ( 𝑎 = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ 𝑎 ) ↔ ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
| 34 | 31 33 | imbi12d | ⊢ ( 𝑎 = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( ( 𝑎 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ 𝑎 ) ) ↔ ( ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) |
| 35 | 34 | imbi2d | ⊢ ( 𝑎 = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( ( 𝐹 ∈ dom 𝑆 → ( 𝑎 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ 𝑎 ) ) ) ↔ ( 𝐹 ∈ dom 𝑆 → ( ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ) |
| 36 | 1 2 | efger | ⊢ ∼ Er 𝑊 |
| 37 | 36 | a1i | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ∼ Er 𝑊 ) |
| 38 | eldifi | ⊢ ( 𝐹 ∈ ( Word 𝑊 ∖ { ∅ } ) → 𝐹 ∈ Word 𝑊 ) | |
| 39 | wrdf | ⊢ ( 𝐹 ∈ Word 𝑊 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑊 ) | |
| 40 | 8 38 39 | 3syl | ⊢ ( 𝐹 ∈ dom 𝑆 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑊 ) |
| 41 | 40 | ffvelcdmda | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ 0 ) ∈ 𝑊 ) |
| 42 | 37 41 | erref | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ 0 ) ) |
| 43 | 42 | ex | ⊢ ( 𝐹 ∈ dom 𝑆 → ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ 0 ) ) ) |
| 44 | elnn0uz | ⊢ ( 𝑖 ∈ ℕ0 ↔ 𝑖 ∈ ( ℤ≥ ‘ 0 ) ) | |
| 45 | peano2fzor | ⊢ ( ( 𝑖 ∈ ( ℤ≥ ‘ 0 ) ∧ ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 46 | 44 45 | sylanb | ⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 47 | 46 | 3adant1 | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 48 | 47 | 3expia | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 49 | 48 | imim1d | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ 𝑖 ) ) → ( ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 50 | 40 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑊 ) |
| 51 | 50 47 | ffvelcdmd | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ 𝑖 ) ∈ 𝑊 ) |
| 52 | fvoveq1 | ⊢ ( 𝑎 = ( 𝑖 + 1 ) → ( 𝐹 ‘ ( 𝑎 − 1 ) ) = ( 𝐹 ‘ ( ( 𝑖 + 1 ) − 1 ) ) ) | |
| 53 | 52 | fveq2d | ⊢ ( 𝑎 = ( 𝑖 + 1 ) → ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑎 − 1 ) ) ) = ( 𝑇 ‘ ( 𝐹 ‘ ( ( 𝑖 + 1 ) − 1 ) ) ) ) |
| 54 | 53 | rneqd | ⊢ ( 𝑎 = ( 𝑖 + 1 ) → ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑎 − 1 ) ) ) = ran ( 𝑇 ‘ ( 𝐹 ‘ ( ( 𝑖 + 1 ) − 1 ) ) ) ) |
| 55 | 27 54 | eleq12d | ⊢ ( 𝑎 = ( 𝑖 + 1 ) → ( ( 𝐹 ‘ 𝑎 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑎 − 1 ) ) ) ↔ ( 𝐹 ‘ ( 𝑖 + 1 ) ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( ( 𝑖 + 1 ) − 1 ) ) ) ) ) |
| 56 | 7 | simp3bi | ⊢ ( 𝐹 ∈ dom 𝑆 → ∀ 𝑎 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑎 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑎 − 1 ) ) ) ) |
| 57 | 56 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ∀ 𝑎 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑎 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑎 − 1 ) ) ) ) |
| 58 | nn0p1nn | ⊢ ( 𝑖 ∈ ℕ0 → ( 𝑖 + 1 ) ∈ ℕ ) | |
| 59 | 58 | 3ad2ant2 | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑖 + 1 ) ∈ ℕ ) |
| 60 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 61 | 59 60 | eleqtrdi | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑖 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 62 | elfzolt2b | ⊢ ( ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝑖 + 1 ) ∈ ( ( 𝑖 + 1 ) ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 63 | 62 | 3ad2ant3 | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑖 + 1 ) ∈ ( ( 𝑖 + 1 ) ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 64 | elfzo3 | ⊢ ( ( 𝑖 + 1 ) ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ↔ ( ( 𝑖 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ ( 𝑖 + 1 ) ∈ ( ( 𝑖 + 1 ) ..^ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 65 | 61 63 64 | sylanbrc | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑖 + 1 ) ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 66 | 55 57 65 | rspcdva | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ ( 𝑖 + 1 ) ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( ( 𝑖 + 1 ) − 1 ) ) ) ) |
| 67 | nn0cn | ⊢ ( 𝑖 ∈ ℕ0 → 𝑖 ∈ ℂ ) | |
| 68 | 67 | 3ad2ant2 | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑖 ∈ ℂ ) |
| 69 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 70 | pncan | ⊢ ( ( 𝑖 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑖 + 1 ) − 1 ) = 𝑖 ) | |
| 71 | 68 69 70 | sylancl | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑖 + 1 ) − 1 ) = 𝑖 ) |
| 72 | 71 | fveq2d | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ ( ( 𝑖 + 1 ) − 1 ) ) = ( 𝐹 ‘ 𝑖 ) ) |
| 73 | 72 | fveq2d | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑇 ‘ ( 𝐹 ‘ ( ( 𝑖 + 1 ) − 1 ) ) ) = ( 𝑇 ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 74 | 73 | rneqd | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ran ( 𝑇 ‘ ( 𝐹 ‘ ( ( 𝑖 + 1 ) − 1 ) ) ) = ran ( 𝑇 ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 75 | 66 74 | eleqtrd | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ ( 𝑖 + 1 ) ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 76 | 1 2 3 4 | efgi2 | ⊢ ( ( ( 𝐹 ‘ 𝑖 ) ∈ 𝑊 ∧ ( 𝐹 ‘ ( 𝑖 + 1 ) ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → ( 𝐹 ‘ 𝑖 ) ∼ ( 𝐹 ‘ ( 𝑖 + 1 ) ) ) |
| 77 | 51 75 76 | syl2anc | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ 𝑖 ) ∼ ( 𝐹 ‘ ( 𝑖 + 1 ) ) ) |
| 78 | 36 | a1i | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ∼ Er 𝑊 ) |
| 79 | 78 | ertr | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ 𝑖 ) ∧ ( 𝐹 ‘ 𝑖 ) ∼ ( 𝐹 ‘ ( 𝑖 + 1 ) ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ ( 𝑖 + 1 ) ) ) ) |
| 80 | 77 79 | mpan2d | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ 𝑖 ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ ( 𝑖 + 1 ) ) ) ) |
| 81 | 80 | 3expia | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ 𝑖 ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 82 | 81 | a2d | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ) → ( ( ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ 𝑖 ) ) → ( ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 83 | 49 82 | syld | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ 𝑖 ) ) → ( ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 84 | 83 | expcom | ⊢ ( 𝑖 ∈ ℕ0 → ( 𝐹 ∈ dom 𝑆 → ( ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ 𝑖 ) ) → ( ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 85 | 84 | a2d | ⊢ ( 𝑖 ∈ ℕ0 → ( ( 𝐹 ∈ dom 𝑆 → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ 𝑖 ) ) ) → ( 𝐹 ∈ dom 𝑆 → ( ( 𝑖 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 86 | 20 25 30 35 43 85 | nn0ind | ⊢ ( ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ0 → ( 𝐹 ∈ dom 𝑆 → ( ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) |
| 87 | 15 86 | mpcom | ⊢ ( 𝐹 ∈ dom 𝑆 → ( ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
| 88 | 13 87 | mpd | ⊢ ( 𝐹 ∈ dom 𝑆 → ( 𝐹 ‘ 0 ) ∼ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
| 89 | 1 2 3 4 5 6 | efgsval | ⊢ ( 𝐹 ∈ dom 𝑆 → ( 𝑆 ‘ 𝐹 ) = ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
| 90 | 88 89 | breqtrrd | ⊢ ( 𝐹 ∈ dom 𝑆 → ( 𝐹 ‘ 0 ) ∼ ( 𝑆 ‘ 𝐹 ) ) |