This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express membership in a half-open integer interval in terms of the "less than or equal to" and "less than" predicates on integers, resp. K e. ( ZZ>=M ) <-> M <_ K , K e. ( K ..^ N ) <-> K < N . (Contributed by Mario Carneiro, 29-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzo3 | |- ( K e. ( M ..^ N ) <-> ( K e. ( ZZ>= ` M ) /\ K e. ( K ..^ N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass | |- ( ( K e. ( ZZ>= ` M ) /\ N e. ZZ /\ K < N ) <-> ( K e. ( ZZ>= ` M ) /\ ( N e. ZZ /\ K < N ) ) ) |
|
| 2 | elfzo2 | |- ( K e. ( M ..^ N ) <-> ( K e. ( ZZ>= ` M ) /\ N e. ZZ /\ K < N ) ) |
|
| 3 | eluzelz | |- ( K e. ( ZZ>= ` M ) -> K e. ZZ ) |
|
| 4 | fzolb | |- ( K e. ( K ..^ N ) <-> ( K e. ZZ /\ N e. ZZ /\ K < N ) ) |
|
| 5 | 3anass | |- ( ( K e. ZZ /\ N e. ZZ /\ K < N ) <-> ( K e. ZZ /\ ( N e. ZZ /\ K < N ) ) ) |
|
| 6 | 4 5 | bitri | |- ( K e. ( K ..^ N ) <-> ( K e. ZZ /\ ( N e. ZZ /\ K < N ) ) ) |
| 7 | 6 | baib | |- ( K e. ZZ -> ( K e. ( K ..^ N ) <-> ( N e. ZZ /\ K < N ) ) ) |
| 8 | 3 7 | syl | |- ( K e. ( ZZ>= ` M ) -> ( K e. ( K ..^ N ) <-> ( N e. ZZ /\ K < N ) ) ) |
| 9 | 8 | pm5.32i | |- ( ( K e. ( ZZ>= ` M ) /\ K e. ( K ..^ N ) ) <-> ( K e. ( ZZ>= ` M ) /\ ( N e. ZZ /\ K < N ) ) ) |
| 10 | 1 2 9 | 3bitr4i | |- ( K e. ( M ..^ N ) <-> ( K e. ( ZZ>= ` M ) /\ K e. ( K ..^ N ) ) ) |