This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton of an irreducible word is an extension sequence. (Contributed by Mario Carneiro, 27-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| efgval.r | |- .~ = ( ~FG ` I ) |
||
| efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
||
| efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
||
| efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
||
| efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
||
| Assertion | efgs1 | |- ( A e. D -> <" A "> e. dom S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 2 | efgval.r | |- .~ = ( ~FG ` I ) |
|
| 3 | efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 4 | efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
|
| 5 | efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
|
| 6 | efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
|
| 7 | eldifi | |- ( A e. ( W \ U_ x e. W ran ( T ` x ) ) -> A e. W ) |
|
| 8 | 7 5 | eleq2s | |- ( A e. D -> A e. W ) |
| 9 | 8 | s1cld | |- ( A e. D -> <" A "> e. Word W ) |
| 10 | s1nz | |- <" A "> =/= (/) |
|
| 11 | eldifsn | |- ( <" A "> e. ( Word W \ { (/) } ) <-> ( <" A "> e. Word W /\ <" A "> =/= (/) ) ) |
|
| 12 | 9 10 11 | sylanblrc | |- ( A e. D -> <" A "> e. ( Word W \ { (/) } ) ) |
| 13 | s1fv | |- ( A e. D -> ( <" A "> ` 0 ) = A ) |
|
| 14 | id | |- ( A e. D -> A e. D ) |
|
| 15 | 13 14 | eqeltrd | |- ( A e. D -> ( <" A "> ` 0 ) e. D ) |
| 16 | s1len | |- ( # ` <" A "> ) = 1 |
|
| 17 | 16 | a1i | |- ( A e. D -> ( # ` <" A "> ) = 1 ) |
| 18 | 17 | oveq2d | |- ( A e. D -> ( 1 ..^ ( # ` <" A "> ) ) = ( 1 ..^ 1 ) ) |
| 19 | fzo0 | |- ( 1 ..^ 1 ) = (/) |
|
| 20 | 18 19 | eqtrdi | |- ( A e. D -> ( 1 ..^ ( # ` <" A "> ) ) = (/) ) |
| 21 | rzal | |- ( ( 1 ..^ ( # ` <" A "> ) ) = (/) -> A. i e. ( 1 ..^ ( # ` <" A "> ) ) ( <" A "> ` i ) e. ran ( T ` ( <" A "> ` ( i - 1 ) ) ) ) |
|
| 22 | 20 21 | syl | |- ( A e. D -> A. i e. ( 1 ..^ ( # ` <" A "> ) ) ( <" A "> ` i ) e. ran ( T ` ( <" A "> ` ( i - 1 ) ) ) ) |
| 23 | 1 2 3 4 5 6 | efgsdm | |- ( <" A "> e. dom S <-> ( <" A "> e. ( Word W \ { (/) } ) /\ ( <" A "> ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` <" A "> ) ) ( <" A "> ` i ) e. ran ( T ` ( <" A "> ` ( i - 1 ) ) ) ) ) |
| 24 | 12 15 22 23 | syl3anbrc | |- ( A e. D -> <" A "> e. dom S ) |