This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Peano-postulate-like theorem for downward closure of a half-open integer range. (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | peano2fzor | |- ( ( K e. ( ZZ>= ` M ) /\ ( K + 1 ) e. ( M ..^ N ) ) -> K e. ( M ..^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( K e. ( ZZ>= ` M ) /\ ( K + 1 ) e. ( M ..^ N ) ) -> ( K + 1 ) e. ( M ..^ N ) ) |
|
| 2 | elfzoel2 | |- ( ( K + 1 ) e. ( M ..^ N ) -> N e. ZZ ) |
|
| 3 | 2 | adantl | |- ( ( K e. ( ZZ>= ` M ) /\ ( K + 1 ) e. ( M ..^ N ) ) -> N e. ZZ ) |
| 4 | fzoval | |- ( N e. ZZ -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
|
| 5 | 3 4 | syl | |- ( ( K e. ( ZZ>= ` M ) /\ ( K + 1 ) e. ( M ..^ N ) ) -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
| 6 | 1 5 | eleqtrd | |- ( ( K e. ( ZZ>= ` M ) /\ ( K + 1 ) e. ( M ..^ N ) ) -> ( K + 1 ) e. ( M ... ( N - 1 ) ) ) |
| 7 | peano2fzr | |- ( ( K e. ( ZZ>= ` M ) /\ ( K + 1 ) e. ( M ... ( N - 1 ) ) ) -> K e. ( M ... ( N - 1 ) ) ) |
|
| 8 | 6 7 | syldan | |- ( ( K e. ( ZZ>= ` M ) /\ ( K + 1 ) e. ( M ..^ N ) ) -> K e. ( M ... ( N - 1 ) ) ) |
| 9 | 8 5 | eleqtrrd | |- ( ( K e. ( ZZ>= ` M ) /\ ( K + 1 ) e. ( M ..^ N ) ) -> K e. ( M ..^ N ) ) |