This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the auxiliary function S defining a sequence of extensions starting at some irreducible word. (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| efgval.r | |- .~ = ( ~FG ` I ) |
||
| efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
||
| efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
||
| efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
||
| efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
||
| Assertion | efgsf | |- S : { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } --> W |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 2 | efgval.r | |- .~ = ( ~FG ` I ) |
|
| 3 | efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 4 | efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
|
| 5 | efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
|
| 6 | efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
|
| 7 | id | |- ( m = t -> m = t ) |
|
| 8 | fveq2 | |- ( m = t -> ( # ` m ) = ( # ` t ) ) |
|
| 9 | 8 | oveq1d | |- ( m = t -> ( ( # ` m ) - 1 ) = ( ( # ` t ) - 1 ) ) |
| 10 | 7 9 | fveq12d | |- ( m = t -> ( m ` ( ( # ` m ) - 1 ) ) = ( t ` ( ( # ` t ) - 1 ) ) ) |
| 11 | 10 | eleq1d | |- ( m = t -> ( ( m ` ( ( # ` m ) - 1 ) ) e. W <-> ( t ` ( ( # ` t ) - 1 ) ) e. W ) ) |
| 12 | 11 | ralrab2 | |- ( A. m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } ( m ` ( ( # ` m ) - 1 ) ) e. W <-> A. t e. ( Word W \ { (/) } ) ( ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) -> ( t ` ( ( # ` t ) - 1 ) ) e. W ) ) |
| 13 | eldifi | |- ( t e. ( Word W \ { (/) } ) -> t e. Word W ) |
|
| 14 | wrdf | |- ( t e. Word W -> t : ( 0 ..^ ( # ` t ) ) --> W ) |
|
| 15 | 13 14 | syl | |- ( t e. ( Word W \ { (/) } ) -> t : ( 0 ..^ ( # ` t ) ) --> W ) |
| 16 | eldifsn | |- ( t e. ( Word W \ { (/) } ) <-> ( t e. Word W /\ t =/= (/) ) ) |
|
| 17 | lennncl | |- ( ( t e. Word W /\ t =/= (/) ) -> ( # ` t ) e. NN ) |
|
| 18 | 16 17 | sylbi | |- ( t e. ( Word W \ { (/) } ) -> ( # ` t ) e. NN ) |
| 19 | fzo0end | |- ( ( # ` t ) e. NN -> ( ( # ` t ) - 1 ) e. ( 0 ..^ ( # ` t ) ) ) |
|
| 20 | 18 19 | syl | |- ( t e. ( Word W \ { (/) } ) -> ( ( # ` t ) - 1 ) e. ( 0 ..^ ( # ` t ) ) ) |
| 21 | 15 20 | ffvelcdmd | |- ( t e. ( Word W \ { (/) } ) -> ( t ` ( ( # ` t ) - 1 ) ) e. W ) |
| 22 | 21 | a1d | |- ( t e. ( Word W \ { (/) } ) -> ( ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) -> ( t ` ( ( # ` t ) - 1 ) ) e. W ) ) |
| 23 | 12 22 | mprgbir | |- A. m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } ( m ` ( ( # ` m ) - 1 ) ) e. W |
| 24 | 6 | fmpt | |- ( A. m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } ( m ` ( ( # ` m ) - 1 ) ) e. W <-> S : { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } --> W ) |
| 25 | 23 24 | mpbi | |- S : { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } --> W |