This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The partial sums of the series expansion of the exponential function at a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007) (Revised by Mario Carneiro, 29-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | effsumlt.1 | |- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
|
| effsumlt.2 | |- ( ph -> A e. RR+ ) |
||
| effsumlt.3 | |- ( ph -> N e. NN0 ) |
||
| Assertion | effsumlt | |- ( ph -> ( seq 0 ( + , F ) ` N ) < ( exp ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | effsumlt.1 | |- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
|
| 2 | effsumlt.2 | |- ( ph -> A e. RR+ ) |
|
| 3 | effsumlt.3 | |- ( ph -> N e. NN0 ) |
|
| 4 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 5 | 0zd | |- ( ph -> 0 e. ZZ ) |
|
| 6 | 1 | eftval | |- ( k e. NN0 -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 7 | 6 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 8 | 2 | rpred | |- ( ph -> A e. RR ) |
| 9 | reeftcl | |- ( ( A e. RR /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. RR ) |
|
| 10 | 8 9 | sylan | |- ( ( ph /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. RR ) |
| 11 | 7 10 | eqeltrd | |- ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. RR ) |
| 12 | 4 5 11 | serfre | |- ( ph -> seq 0 ( + , F ) : NN0 --> RR ) |
| 13 | 12 3 | ffvelcdmd | |- ( ph -> ( seq 0 ( + , F ) ` N ) e. RR ) |
| 14 | eqid | |- ( ZZ>= ` ( N + 1 ) ) = ( ZZ>= ` ( N + 1 ) ) |
|
| 15 | peano2nn0 | |- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
|
| 16 | 3 15 | syl | |- ( ph -> ( N + 1 ) e. NN0 ) |
| 17 | eqidd | |- ( ( ph /\ k e. NN0 ) -> ( F ` k ) = ( F ` k ) ) |
|
| 18 | nn0z | |- ( k e. NN0 -> k e. ZZ ) |
|
| 19 | rpexpcl | |- ( ( A e. RR+ /\ k e. ZZ ) -> ( A ^ k ) e. RR+ ) |
|
| 20 | 2 18 19 | syl2an | |- ( ( ph /\ k e. NN0 ) -> ( A ^ k ) e. RR+ ) |
| 21 | faccl | |- ( k e. NN0 -> ( ! ` k ) e. NN ) |
|
| 22 | 21 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( ! ` k ) e. NN ) |
| 23 | 22 | nnrpd | |- ( ( ph /\ k e. NN0 ) -> ( ! ` k ) e. RR+ ) |
| 24 | 20 23 | rpdivcld | |- ( ( ph /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. RR+ ) |
| 25 | 7 24 | eqeltrd | |- ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. RR+ ) |
| 26 | 8 | recnd | |- ( ph -> A e. CC ) |
| 27 | 1 | efcllem | |- ( A e. CC -> seq 0 ( + , F ) e. dom ~~> ) |
| 28 | 26 27 | syl | |- ( ph -> seq 0 ( + , F ) e. dom ~~> ) |
| 29 | 4 14 16 17 25 28 | isumrpcl | |- ( ph -> sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( F ` k ) e. RR+ ) |
| 30 | 13 29 | ltaddrpd | |- ( ph -> ( seq 0 ( + , F ) ` N ) < ( ( seq 0 ( + , F ) ` N ) + sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( F ` k ) ) ) |
| 31 | 1 | efval2 | |- ( A e. CC -> ( exp ` A ) = sum_ k e. NN0 ( F ` k ) ) |
| 32 | 26 31 | syl | |- ( ph -> ( exp ` A ) = sum_ k e. NN0 ( F ` k ) ) |
| 33 | 11 | recnd | |- ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. CC ) |
| 34 | 4 14 16 17 33 28 | isumsplit | |- ( ph -> sum_ k e. NN0 ( F ` k ) = ( sum_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( F ` k ) + sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( F ` k ) ) ) |
| 35 | 3 | nn0cnd | |- ( ph -> N e. CC ) |
| 36 | ax-1cn | |- 1 e. CC |
|
| 37 | pncan | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N ) |
|
| 38 | 35 36 37 | sylancl | |- ( ph -> ( ( N + 1 ) - 1 ) = N ) |
| 39 | 38 | oveq2d | |- ( ph -> ( 0 ... ( ( N + 1 ) - 1 ) ) = ( 0 ... N ) ) |
| 40 | 39 | sumeq1d | |- ( ph -> sum_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( F ` k ) = sum_ k e. ( 0 ... N ) ( F ` k ) ) |
| 41 | eqidd | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( F ` k ) = ( F ` k ) ) |
|
| 42 | 3 4 | eleqtrdi | |- ( ph -> N e. ( ZZ>= ` 0 ) ) |
| 43 | elfznn0 | |- ( k e. ( 0 ... N ) -> k e. NN0 ) |
|
| 44 | 43 33 | sylan2 | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( F ` k ) e. CC ) |
| 45 | 41 42 44 | fsumser | |- ( ph -> sum_ k e. ( 0 ... N ) ( F ` k ) = ( seq 0 ( + , F ) ` N ) ) |
| 46 | 40 45 | eqtrd | |- ( ph -> sum_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( F ` k ) = ( seq 0 ( + , F ) ` N ) ) |
| 47 | 46 | oveq1d | |- ( ph -> ( sum_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( F ` k ) + sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( F ` k ) ) = ( ( seq 0 ( + , F ) ` N ) + sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( F ` k ) ) ) |
| 48 | 32 34 47 | 3eqtrd | |- ( ph -> ( exp ` A ) = ( ( seq 0 ( + , F ) ` N ) + sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( F ` k ) ) ) |
| 49 | 30 48 | breqtrrd | |- ( ph -> ( seq 0 ( + , F ) ` N ) < ( exp ` A ) ) |