This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The partial sums of the series expansion of the exponential function at a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007) (Revised by Mario Carneiro, 29-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | effsumlt.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| effsumlt.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | ||
| effsumlt.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| Assertion | effsumlt | ⊢ ( 𝜑 → ( seq 0 ( + , 𝐹 ) ‘ 𝑁 ) < ( exp ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | effsumlt.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 2 | effsumlt.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
| 3 | effsumlt.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 4 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 5 | 0zd | ⊢ ( 𝜑 → 0 ∈ ℤ ) | |
| 6 | 1 | eftval | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 8 | 2 | rpred | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 9 | reeftcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ ) | |
| 10 | 8 9 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
| 11 | 7 10 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 12 | 4 5 11 | serfre | ⊢ ( 𝜑 → seq 0 ( + , 𝐹 ) : ℕ0 ⟶ ℝ ) |
| 13 | 12 3 | ffvelcdmd | ⊢ ( 𝜑 → ( seq 0 ( + , 𝐹 ) ‘ 𝑁 ) ∈ ℝ ) |
| 14 | eqid | ⊢ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) = ( ℤ≥ ‘ ( 𝑁 + 1 ) ) | |
| 15 | peano2nn0 | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) | |
| 16 | 3 15 | syl | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 17 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 18 | nn0z | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ ) | |
| 19 | rpexpcl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℤ ) → ( 𝐴 ↑ 𝑘 ) ∈ ℝ+ ) | |
| 20 | 2 18 19 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℝ+ ) |
| 21 | faccl | ⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) | |
| 22 | 21 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 23 | 22 | nnrpd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℝ+ ) |
| 24 | 20 23 | rpdivcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ+ ) |
| 25 | 7 24 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ+ ) |
| 26 | 8 | recnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 27 | 1 | efcllem | ⊢ ( 𝐴 ∈ ℂ → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 28 | 26 27 | syl | ⊢ ( 𝜑 → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 29 | 4 14 16 17 25 28 | isumrpcl | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ+ ) |
| 30 | 13 29 | ltaddrpd | ⊢ ( 𝜑 → ( seq 0 ( + , 𝐹 ) ‘ 𝑁 ) < ( ( seq 0 ( + , 𝐹 ) ‘ 𝑁 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 31 | 1 | efval2 | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = Σ 𝑘 ∈ ℕ0 ( 𝐹 ‘ 𝑘 ) ) |
| 32 | 26 31 | syl | ⊢ ( 𝜑 → ( exp ‘ 𝐴 ) = Σ 𝑘 ∈ ℕ0 ( 𝐹 ‘ 𝑘 ) ) |
| 33 | 11 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 34 | 4 14 16 17 33 28 | isumsplit | ⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ0 ( 𝐹 ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 35 | 3 | nn0cnd | ⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 36 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 37 | pncan | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) | |
| 38 | 35 36 37 | sylancl | ⊢ ( 𝜑 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 39 | 38 | oveq2d | ⊢ ( 𝜑 → ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) = ( 0 ... 𝑁 ) ) |
| 40 | 39 | sumeq1d | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ) |
| 41 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 42 | 3 4 | eleqtrdi | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 43 | elfznn0 | ⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℕ0 ) | |
| 44 | 43 33 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 45 | 41 42 44 | fsumser | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) = ( seq 0 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| 46 | 40 45 | eqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) = ( seq 0 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| 47 | 46 | oveq1d | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) = ( ( seq 0 ( + , 𝐹 ) ‘ 𝑁 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 48 | 32 34 47 | 3eqtrd | ⊢ ( 𝜑 → ( exp ‘ 𝐴 ) = ( ( seq 0 ( + , 𝐹 ) ‘ 𝑁 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 49 | 30 48 | breqtrrd | ⊢ ( 𝜑 → ( seq 0 ( + , 𝐹 ) ‘ 𝑁 ) < ( exp ‘ 𝐴 ) ) |