This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Swap denominators in a division. (Contributed by NM, 2-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divdiv32 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / B ) / C ) = ( ( A / C ) / B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reccl | |- ( ( B e. CC /\ B =/= 0 ) -> ( 1 / B ) e. CC ) |
|
| 2 | div23 | |- ( ( A e. CC /\ ( 1 / B ) e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. ( 1 / B ) ) / C ) = ( ( A / C ) x. ( 1 / B ) ) ) |
|
| 3 | 1 2 | syl3an2 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. ( 1 / B ) ) / C ) = ( ( A / C ) x. ( 1 / B ) ) ) |
| 4 | divrec | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
|
| 5 | 4 | 3expb | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
| 6 | 5 | 3adant3 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
| 7 | 6 | oveq1d | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / B ) / C ) = ( ( A x. ( 1 / B ) ) / C ) ) |
| 8 | divcl | |- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> ( A / C ) e. CC ) |
|
| 9 | 8 | 3expb | |- ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A / C ) e. CC ) |
| 10 | divrec | |- ( ( ( A / C ) e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / C ) / B ) = ( ( A / C ) x. ( 1 / B ) ) ) |
|
| 11 | 9 10 | syl3an1 | |- ( ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) /\ B e. CC /\ B =/= 0 ) -> ( ( A / C ) / B ) = ( ( A / C ) x. ( 1 / B ) ) ) |
| 12 | 11 | 3expb | |- ( ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A / C ) / B ) = ( ( A / C ) x. ( 1 / B ) ) ) |
| 13 | 12 | 3impa | |- ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A / C ) / B ) = ( ( A / C ) x. ( 1 / B ) ) ) |
| 14 | 13 | 3com23 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) / B ) = ( ( A / C ) x. ( 1 / B ) ) ) |
| 15 | 3 7 14 | 3eqtr4d | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / B ) / C ) = ( ( A / C ) / B ) ) |