This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cosine function has no zeroes within the vertical strip of the complex plane between real part -upi / 2 and pi / 2 . (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosne0 | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` A ) =/= 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfpire | |- ( _pi / 2 ) e. RR |
|
| 2 | 1 | recni | |- ( _pi / 2 ) e. CC |
| 3 | simpl | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> A e. CC ) |
|
| 4 | nncan | |- ( ( ( _pi / 2 ) e. CC /\ A e. CC ) -> ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) = A ) |
|
| 5 | 2 3 4 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) = A ) |
| 6 | 5 | fveq2d | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) ) = ( cos ` A ) ) |
| 7 | subcl | |- ( ( ( _pi / 2 ) e. CC /\ A e. CC ) -> ( ( _pi / 2 ) - A ) e. CC ) |
|
| 8 | 2 3 7 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _pi / 2 ) - A ) e. CC ) |
| 9 | coshalfpim | |- ( ( ( _pi / 2 ) - A ) e. CC -> ( cos ` ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) ) = ( sin ` ( ( _pi / 2 ) - A ) ) ) |
|
| 10 | 8 9 | syl | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) ) = ( sin ` ( ( _pi / 2 ) - A ) ) ) |
| 11 | 6 10 | eqtr3d | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` A ) = ( sin ` ( ( _pi / 2 ) - A ) ) ) |
| 12 | 5 | adantr | |- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) = A ) |
| 13 | picn | |- _pi e. CC |
|
| 14 | 13 | a1i | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> _pi e. CC ) |
| 15 | pire | |- _pi e. RR |
|
| 16 | pipos | |- 0 < _pi |
|
| 17 | 15 16 | gt0ne0ii | |- _pi =/= 0 |
| 18 | 17 | a1i | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> _pi =/= 0 ) |
| 19 | 8 14 18 | divcan1d | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( ( _pi / 2 ) - A ) / _pi ) x. _pi ) = ( ( _pi / 2 ) - A ) ) |
| 20 | 19 | adantr | |- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( ( ( ( _pi / 2 ) - A ) / _pi ) x. _pi ) = ( ( _pi / 2 ) - A ) ) |
| 21 | zre | |- ( ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ -> ( ( ( _pi / 2 ) - A ) / _pi ) e. RR ) |
|
| 22 | 21 | adantl | |- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( ( ( _pi / 2 ) - A ) / _pi ) e. RR ) |
| 23 | remulcl | |- ( ( ( ( ( _pi / 2 ) - A ) / _pi ) e. RR /\ _pi e. RR ) -> ( ( ( ( _pi / 2 ) - A ) / _pi ) x. _pi ) e. RR ) |
|
| 24 | 22 15 23 | sylancl | |- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( ( ( ( _pi / 2 ) - A ) / _pi ) x. _pi ) e. RR ) |
| 25 | 20 24 | eqeltrrd | |- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( ( _pi / 2 ) - A ) e. RR ) |
| 26 | resubcl | |- ( ( ( _pi / 2 ) e. RR /\ ( ( _pi / 2 ) - A ) e. RR ) -> ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) e. RR ) |
|
| 27 | 1 25 26 | sylancr | |- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) e. RR ) |
| 28 | 12 27 | eqeltrrd | |- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> A e. RR ) |
| 29 | 28 | rered | |- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( Re ` A ) = A ) |
| 30 | simplr | |- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
|
| 31 | 29 30 | eqeltrrd | |- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
| 32 | 0zd | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 0 e. ZZ ) |
|
| 33 | elioore | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> A e. RR ) |
|
| 34 | resubcl | |- ( ( ( _pi / 2 ) e. RR /\ A e. RR ) -> ( ( _pi / 2 ) - A ) e. RR ) |
|
| 35 | 1 33 34 | sylancr | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( _pi / 2 ) - A ) e. RR ) |
| 36 | 15 | a1i | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> _pi e. RR ) |
| 37 | eliooord | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( -u ( _pi / 2 ) < A /\ A < ( _pi / 2 ) ) ) |
|
| 38 | 37 | simprd | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> A < ( _pi / 2 ) ) |
| 39 | posdif | |- ( ( A e. RR /\ ( _pi / 2 ) e. RR ) -> ( A < ( _pi / 2 ) <-> 0 < ( ( _pi / 2 ) - A ) ) ) |
|
| 40 | 33 1 39 | sylancl | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( A < ( _pi / 2 ) <-> 0 < ( ( _pi / 2 ) - A ) ) ) |
| 41 | 38 40 | mpbid | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 0 < ( ( _pi / 2 ) - A ) ) |
| 42 | 16 | a1i | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 0 < _pi ) |
| 43 | 35 36 41 42 | divgt0d | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 0 < ( ( ( _pi / 2 ) - A ) / _pi ) ) |
| 44 | 1 | a1i | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( _pi / 2 ) e. RR ) |
| 45 | 2 | negcli | |- -u ( _pi / 2 ) e. CC |
| 46 | 13 2 | negsubi | |- ( _pi + -u ( _pi / 2 ) ) = ( _pi - ( _pi / 2 ) ) |
| 47 | pidiv2halves | |- ( ( _pi / 2 ) + ( _pi / 2 ) ) = _pi |
|
| 48 | 13 2 2 47 | subaddrii | |- ( _pi - ( _pi / 2 ) ) = ( _pi / 2 ) |
| 49 | 46 48 | eqtri | |- ( _pi + -u ( _pi / 2 ) ) = ( _pi / 2 ) |
| 50 | 2 13 45 49 | subaddrii | |- ( ( _pi / 2 ) - _pi ) = -u ( _pi / 2 ) |
| 51 | 37 | simpld | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> -u ( _pi / 2 ) < A ) |
| 52 | 50 51 | eqbrtrid | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( _pi / 2 ) - _pi ) < A ) |
| 53 | 44 36 33 52 | ltsub23d | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( _pi / 2 ) - A ) < _pi ) |
| 54 | 13 | mulridi | |- ( _pi x. 1 ) = _pi |
| 55 | 53 54 | breqtrrdi | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( _pi / 2 ) - A ) < ( _pi x. 1 ) ) |
| 56 | 1red | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 1 e. RR ) |
|
| 57 | ltdivmul | |- ( ( ( ( _pi / 2 ) - A ) e. RR /\ 1 e. RR /\ ( _pi e. RR /\ 0 < _pi ) ) -> ( ( ( ( _pi / 2 ) - A ) / _pi ) < 1 <-> ( ( _pi / 2 ) - A ) < ( _pi x. 1 ) ) ) |
|
| 58 | 35 56 36 42 57 | syl112anc | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( ( ( _pi / 2 ) - A ) / _pi ) < 1 <-> ( ( _pi / 2 ) - A ) < ( _pi x. 1 ) ) ) |
| 59 | 55 58 | mpbird | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( ( _pi / 2 ) - A ) / _pi ) < 1 ) |
| 60 | 1e0p1 | |- 1 = ( 0 + 1 ) |
|
| 61 | 59 60 | breqtrdi | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( ( _pi / 2 ) - A ) / _pi ) < ( 0 + 1 ) ) |
| 62 | btwnnz | |- ( ( 0 e. ZZ /\ 0 < ( ( ( _pi / 2 ) - A ) / _pi ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) < ( 0 + 1 ) ) -> -. ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) |
|
| 63 | 32 43 61 62 | syl3anc | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> -. ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) |
| 64 | 31 63 | syl | |- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> -. ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) |
| 65 | 64 | pm2.01da | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -. ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) |
| 66 | sineq0 | |- ( ( ( _pi / 2 ) - A ) e. CC -> ( ( sin ` ( ( _pi / 2 ) - A ) ) = 0 <-> ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) ) |
|
| 67 | 8 66 | syl | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( sin ` ( ( _pi / 2 ) - A ) ) = 0 <-> ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) ) |
| 68 | 67 | necon3abid | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( sin ` ( ( _pi / 2 ) - A ) ) =/= 0 <-> -. ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) ) |
| 69 | 65 68 | mpbird | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( sin ` ( ( _pi / 2 ) - A ) ) =/= 0 ) |
| 70 | 11 69 | eqnetrd | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` A ) =/= 0 ) |