This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bijection from the numbers less than N / A to the multiples of A less than N . Useful for some sum manipulations. (Contributed by Mario Carneiro, 3-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsflf1o.1 | |- ( ph -> A e. RR ) |
|
| dvdsflf1o.2 | |- ( ph -> N e. NN ) |
||
| dvdsflf1o.f | |- F = ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) |-> ( N x. n ) ) |
||
| Assertion | dvdsflf1o | |- ( ph -> F : ( 1 ... ( |_ ` ( A / N ) ) ) -1-1-onto-> { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsflf1o.1 | |- ( ph -> A e. RR ) |
|
| 2 | dvdsflf1o.2 | |- ( ph -> N e. NN ) |
|
| 3 | dvdsflf1o.f | |- F = ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) |-> ( N x. n ) ) |
|
| 4 | breq2 | |- ( x = ( N x. n ) -> ( N || x <-> N || ( N x. n ) ) ) |
|
| 5 | elfznn | |- ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) -> n e. NN ) |
|
| 6 | nnmulcl | |- ( ( N e. NN /\ n e. NN ) -> ( N x. n ) e. NN ) |
|
| 7 | 2 5 6 | syl2an | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( N x. n ) e. NN ) |
| 8 | 1 2 | nndivred | |- ( ph -> ( A / N ) e. RR ) |
| 9 | fznnfl | |- ( ( A / N ) e. RR -> ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) <-> ( n e. NN /\ n <_ ( A / N ) ) ) ) |
|
| 10 | 8 9 | syl | |- ( ph -> ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) <-> ( n e. NN /\ n <_ ( A / N ) ) ) ) |
| 11 | 10 | simplbda | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> n <_ ( A / N ) ) |
| 12 | 5 | adantl | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> n e. NN ) |
| 13 | 12 | nnred | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> n e. RR ) |
| 14 | 1 | adantr | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> A e. RR ) |
| 15 | 2 | nnred | |- ( ph -> N e. RR ) |
| 16 | 15 | adantr | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> N e. RR ) |
| 17 | 2 | nngt0d | |- ( ph -> 0 < N ) |
| 18 | 17 | adantr | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> 0 < N ) |
| 19 | lemuldiv2 | |- ( ( n e. RR /\ A e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( N x. n ) <_ A <-> n <_ ( A / N ) ) ) |
|
| 20 | 13 14 16 18 19 | syl112anc | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( ( N x. n ) <_ A <-> n <_ ( A / N ) ) ) |
| 21 | 11 20 | mpbird | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( N x. n ) <_ A ) |
| 22 | 2 | nnzd | |- ( ph -> N e. ZZ ) |
| 23 | elfzelz | |- ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) -> n e. ZZ ) |
|
| 24 | zmulcl | |- ( ( N e. ZZ /\ n e. ZZ ) -> ( N x. n ) e. ZZ ) |
|
| 25 | 22 23 24 | syl2an | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( N x. n ) e. ZZ ) |
| 26 | flge | |- ( ( A e. RR /\ ( N x. n ) e. ZZ ) -> ( ( N x. n ) <_ A <-> ( N x. n ) <_ ( |_ ` A ) ) ) |
|
| 27 | 14 25 26 | syl2anc | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( ( N x. n ) <_ A <-> ( N x. n ) <_ ( |_ ` A ) ) ) |
| 28 | 21 27 | mpbid | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( N x. n ) <_ ( |_ ` A ) ) |
| 29 | 1 | flcld | |- ( ph -> ( |_ ` A ) e. ZZ ) |
| 30 | 29 | adantr | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( |_ ` A ) e. ZZ ) |
| 31 | fznn | |- ( ( |_ ` A ) e. ZZ -> ( ( N x. n ) e. ( 1 ... ( |_ ` A ) ) <-> ( ( N x. n ) e. NN /\ ( N x. n ) <_ ( |_ ` A ) ) ) ) |
|
| 32 | 30 31 | syl | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( ( N x. n ) e. ( 1 ... ( |_ ` A ) ) <-> ( ( N x. n ) e. NN /\ ( N x. n ) <_ ( |_ ` A ) ) ) ) |
| 33 | 7 28 32 | mpbir2and | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( N x. n ) e. ( 1 ... ( |_ ` A ) ) ) |
| 34 | dvdsmul1 | |- ( ( N e. ZZ /\ n e. ZZ ) -> N || ( N x. n ) ) |
|
| 35 | 22 23 34 | syl2an | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> N || ( N x. n ) ) |
| 36 | 4 33 35 | elrabd | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( N x. n ) e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) |
| 37 | breq2 | |- ( x = m -> ( N || x <-> N || m ) ) |
|
| 38 | 37 | elrab | |- ( m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } <-> ( m e. ( 1 ... ( |_ ` A ) ) /\ N || m ) ) |
| 39 | 38 | simprbi | |- ( m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } -> N || m ) |
| 40 | 39 | adantl | |- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> N || m ) |
| 41 | elrabi | |- ( m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } -> m e. ( 1 ... ( |_ ` A ) ) ) |
|
| 42 | 41 | adantl | |- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> m e. ( 1 ... ( |_ ` A ) ) ) |
| 43 | elfznn | |- ( m e. ( 1 ... ( |_ ` A ) ) -> m e. NN ) |
|
| 44 | 42 43 | syl | |- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> m e. NN ) |
| 45 | 2 | adantr | |- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> N e. NN ) |
| 46 | nndivdvds | |- ( ( m e. NN /\ N e. NN ) -> ( N || m <-> ( m / N ) e. NN ) ) |
|
| 47 | 44 45 46 | syl2anc | |- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> ( N || m <-> ( m / N ) e. NN ) ) |
| 48 | 40 47 | mpbid | |- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> ( m / N ) e. NN ) |
| 49 | fznnfl | |- ( A e. RR -> ( m e. ( 1 ... ( |_ ` A ) ) <-> ( m e. NN /\ m <_ A ) ) ) |
|
| 50 | 1 49 | syl | |- ( ph -> ( m e. ( 1 ... ( |_ ` A ) ) <-> ( m e. NN /\ m <_ A ) ) ) |
| 51 | 50 | simplbda | |- ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> m <_ A ) |
| 52 | 41 51 | sylan2 | |- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> m <_ A ) |
| 53 | 44 | nnred | |- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> m e. RR ) |
| 54 | 1 | adantr | |- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> A e. RR ) |
| 55 | 15 | adantr | |- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> N e. RR ) |
| 56 | 17 | adantr | |- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> 0 < N ) |
| 57 | lediv1 | |- ( ( m e. RR /\ A e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( m <_ A <-> ( m / N ) <_ ( A / N ) ) ) |
|
| 58 | 53 54 55 56 57 | syl112anc | |- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> ( m <_ A <-> ( m / N ) <_ ( A / N ) ) ) |
| 59 | 52 58 | mpbid | |- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> ( m / N ) <_ ( A / N ) ) |
| 60 | 8 | adantr | |- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> ( A / N ) e. RR ) |
| 61 | fznnfl | |- ( ( A / N ) e. RR -> ( ( m / N ) e. ( 1 ... ( |_ ` ( A / N ) ) ) <-> ( ( m / N ) e. NN /\ ( m / N ) <_ ( A / N ) ) ) ) |
|
| 62 | 60 61 | syl | |- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> ( ( m / N ) e. ( 1 ... ( |_ ` ( A / N ) ) ) <-> ( ( m / N ) e. NN /\ ( m / N ) <_ ( A / N ) ) ) ) |
| 63 | 48 59 62 | mpbir2and | |- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> ( m / N ) e. ( 1 ... ( |_ ` ( A / N ) ) ) ) |
| 64 | 44 | nncnd | |- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> m e. CC ) |
| 65 | 64 | adantrl | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) ) -> m e. CC ) |
| 66 | 2 | nncnd | |- ( ph -> N e. CC ) |
| 67 | 66 | adantr | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) ) -> N e. CC ) |
| 68 | 12 | nncnd | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> n e. CC ) |
| 69 | 68 | adantrr | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) ) -> n e. CC ) |
| 70 | 2 | nnne0d | |- ( ph -> N =/= 0 ) |
| 71 | 70 | adantr | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) ) -> N =/= 0 ) |
| 72 | 65 67 69 71 | divmuld | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) ) -> ( ( m / N ) = n <-> ( N x. n ) = m ) ) |
| 73 | eqcom | |- ( n = ( m / N ) <-> ( m / N ) = n ) |
|
| 74 | eqcom | |- ( m = ( N x. n ) <-> ( N x. n ) = m ) |
|
| 75 | 72 73 74 | 3bitr4g | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) ) -> ( n = ( m / N ) <-> m = ( N x. n ) ) ) |
| 76 | 3 36 63 75 | f1o2d | |- ( ph -> F : ( 1 ... ( |_ ` ( A / N ) ) ) -1-1-onto-> { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) |