This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sum commutation from sum_ n <_ A , sum_ d || n , B ( n , d ) to sum_ d <_ A , sum_ m <_ A / d , B ( n , d m ) . (Contributed by Mario Carneiro, 4-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsflsumcom.1 | |- ( n = ( d x. m ) -> B = C ) |
|
| dvdsflsumcom.2 | |- ( ph -> A e. RR ) |
||
| dvdsflsumcom.3 | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) ) -> B e. CC ) |
||
| Assertion | dvdsflsumcom | |- ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ d e. { x e. NN | x || n } B = sum_ d e. ( 1 ... ( |_ ` A ) ) sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsflsumcom.1 | |- ( n = ( d x. m ) -> B = C ) |
|
| 2 | dvdsflsumcom.2 | |- ( ph -> A e. RR ) |
|
| 3 | dvdsflsumcom.3 | |- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) ) -> B e. CC ) |
|
| 4 | fzfid | |- ( ph -> ( 1 ... ( |_ ` A ) ) e. Fin ) |
|
| 5 | fzfid | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 ... n ) e. Fin ) |
|
| 6 | elfznn | |- ( n e. ( 1 ... ( |_ ` A ) ) -> n e. NN ) |
|
| 7 | 6 | adantl | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. NN ) |
| 8 | dvdsssfz1 | |- ( n e. NN -> { x e. NN | x || n } C_ ( 1 ... n ) ) |
|
| 9 | 7 8 | syl | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> { x e. NN | x || n } C_ ( 1 ... n ) ) |
| 10 | 5 9 | ssfid | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> { x e. NN | x || n } e. Fin ) |
| 11 | nnre | |- ( d e. NN -> d e. RR ) |
|
| 12 | 11 | ad2antrl | |- ( ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ ( d e. NN /\ d || n ) ) -> d e. RR ) |
| 13 | 7 | adantr | |- ( ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ ( d e. NN /\ d || n ) ) -> n e. NN ) |
| 14 | 13 | nnred | |- ( ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ ( d e. NN /\ d || n ) ) -> n e. RR ) |
| 15 | 2 | ad2antrr | |- ( ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ ( d e. NN /\ d || n ) ) -> A e. RR ) |
| 16 | nnz | |- ( d e. NN -> d e. ZZ ) |
|
| 17 | dvdsle | |- ( ( d e. ZZ /\ n e. NN ) -> ( d || n -> d <_ n ) ) |
|
| 18 | 16 7 17 | syl2anr | |- ( ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ d e. NN ) -> ( d || n -> d <_ n ) ) |
| 19 | 18 | impr | |- ( ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ ( d e. NN /\ d || n ) ) -> d <_ n ) |
| 20 | fznnfl | |- ( A e. RR -> ( n e. ( 1 ... ( |_ ` A ) ) <-> ( n e. NN /\ n <_ A ) ) ) |
|
| 21 | 2 20 | syl | |- ( ph -> ( n e. ( 1 ... ( |_ ` A ) ) <-> ( n e. NN /\ n <_ A ) ) ) |
| 22 | 21 | simplbda | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n <_ A ) |
| 23 | 22 | adantr | |- ( ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ ( d e. NN /\ d || n ) ) -> n <_ A ) |
| 24 | 12 14 15 19 23 | letrd | |- ( ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ ( d e. NN /\ d || n ) ) -> d <_ A ) |
| 25 | 24 | ex | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( d e. NN /\ d || n ) -> d <_ A ) ) |
| 26 | 25 | pm4.71rd | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( d e. NN /\ d || n ) <-> ( d <_ A /\ ( d e. NN /\ d || n ) ) ) ) |
| 27 | ancom | |- ( ( d <_ A /\ ( d e. NN /\ d || n ) ) <-> ( ( d e. NN /\ d || n ) /\ d <_ A ) ) |
|
| 28 | an32 | |- ( ( ( d e. NN /\ d || n ) /\ d <_ A ) <-> ( ( d e. NN /\ d <_ A ) /\ d || n ) ) |
|
| 29 | 27 28 | bitri | |- ( ( d <_ A /\ ( d e. NN /\ d || n ) ) <-> ( ( d e. NN /\ d <_ A ) /\ d || n ) ) |
| 30 | 26 29 | bitrdi | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( d e. NN /\ d || n ) <-> ( ( d e. NN /\ d <_ A ) /\ d || n ) ) ) |
| 31 | fznnfl | |- ( A e. RR -> ( d e. ( 1 ... ( |_ ` A ) ) <-> ( d e. NN /\ d <_ A ) ) ) |
|
| 32 | 2 31 | syl | |- ( ph -> ( d e. ( 1 ... ( |_ ` A ) ) <-> ( d e. NN /\ d <_ A ) ) ) |
| 33 | 32 | adantr | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( d e. ( 1 ... ( |_ ` A ) ) <-> ( d e. NN /\ d <_ A ) ) ) |
| 34 | 33 | anbi1d | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( d e. ( 1 ... ( |_ ` A ) ) /\ d || n ) <-> ( ( d e. NN /\ d <_ A ) /\ d || n ) ) ) |
| 35 | 30 34 | bitr4d | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( d e. NN /\ d || n ) <-> ( d e. ( 1 ... ( |_ ` A ) ) /\ d || n ) ) ) |
| 36 | 35 | pm5.32da | |- ( ph -> ( ( n e. ( 1 ... ( |_ ` A ) ) /\ ( d e. NN /\ d || n ) ) <-> ( n e. ( 1 ... ( |_ ` A ) ) /\ ( d e. ( 1 ... ( |_ ` A ) ) /\ d || n ) ) ) ) |
| 37 | an12 | |- ( ( n e. ( 1 ... ( |_ ` A ) ) /\ ( d e. ( 1 ... ( |_ ` A ) ) /\ d || n ) ) <-> ( d e. ( 1 ... ( |_ ` A ) ) /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d || n ) ) ) |
|
| 38 | 36 37 | bitrdi | |- ( ph -> ( ( n e. ( 1 ... ( |_ ` A ) ) /\ ( d e. NN /\ d || n ) ) <-> ( d e. ( 1 ... ( |_ ` A ) ) /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d || n ) ) ) ) |
| 39 | breq1 | |- ( x = d -> ( x || n <-> d || n ) ) |
|
| 40 | 39 | elrab | |- ( d e. { x e. NN | x || n } <-> ( d e. NN /\ d || n ) ) |
| 41 | 40 | anbi2i | |- ( ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) <-> ( n e. ( 1 ... ( |_ ` A ) ) /\ ( d e. NN /\ d || n ) ) ) |
| 42 | breq2 | |- ( x = n -> ( d || x <-> d || n ) ) |
|
| 43 | 42 | elrab | |- ( n e. { x e. ( 1 ... ( |_ ` A ) ) | d || x } <-> ( n e. ( 1 ... ( |_ ` A ) ) /\ d || n ) ) |
| 44 | 43 | anbi2i | |- ( ( d e. ( 1 ... ( |_ ` A ) ) /\ n e. { x e. ( 1 ... ( |_ ` A ) ) | d || x } ) <-> ( d e. ( 1 ... ( |_ ` A ) ) /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d || n ) ) ) |
| 45 | 38 41 44 | 3bitr4g | |- ( ph -> ( ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) <-> ( d e. ( 1 ... ( |_ ` A ) ) /\ n e. { x e. ( 1 ... ( |_ ` A ) ) | d || x } ) ) ) |
| 46 | 4 4 10 45 3 | fsumcom2 | |- ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ d e. { x e. NN | x || n } B = sum_ d e. ( 1 ... ( |_ ` A ) ) sum_ n e. { x e. ( 1 ... ( |_ ` A ) ) | d || x } B ) |
| 47 | fzfid | |- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 ... ( |_ ` ( A / d ) ) ) e. Fin ) |
|
| 48 | 2 | adantr | |- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> A e. RR ) |
| 49 | 32 | simprbda | |- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> d e. NN ) |
| 50 | eqid | |- ( y e. ( 1 ... ( |_ ` ( A / d ) ) ) |-> ( d x. y ) ) = ( y e. ( 1 ... ( |_ ` ( A / d ) ) ) |-> ( d x. y ) ) |
|
| 51 | 48 49 50 | dvdsflf1o | |- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( y e. ( 1 ... ( |_ ` ( A / d ) ) ) |-> ( d x. y ) ) : ( 1 ... ( |_ ` ( A / d ) ) ) -1-1-onto-> { x e. ( 1 ... ( |_ ` A ) ) | d || x } ) |
| 52 | oveq2 | |- ( y = m -> ( d x. y ) = ( d x. m ) ) |
|
| 53 | ovex | |- ( d x. m ) e. _V |
|
| 54 | 52 50 53 | fvmpt | |- ( m e. ( 1 ... ( |_ ` ( A / d ) ) ) -> ( ( y e. ( 1 ... ( |_ ` ( A / d ) ) ) |-> ( d x. y ) ) ` m ) = ( d x. m ) ) |
| 55 | 54 | adantl | |- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( y e. ( 1 ... ( |_ ` ( A / d ) ) ) |-> ( d x. y ) ) ` m ) = ( d x. m ) ) |
| 56 | 45 | biimpar | |- ( ( ph /\ ( d e. ( 1 ... ( |_ ` A ) ) /\ n e. { x e. ( 1 ... ( |_ ` A ) ) | d || x } ) ) -> ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) ) |
| 57 | 56 3 | syldan | |- ( ( ph /\ ( d e. ( 1 ... ( |_ ` A ) ) /\ n e. { x e. ( 1 ... ( |_ ` A ) ) | d || x } ) ) -> B e. CC ) |
| 58 | 57 | anassrs | |- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ n e. { x e. ( 1 ... ( |_ ` A ) ) | d || x } ) -> B e. CC ) |
| 59 | 1 47 51 55 58 | fsumf1o | |- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> sum_ n e. { x e. ( 1 ... ( |_ ` A ) ) | d || x } B = sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) C ) |
| 60 | 59 | sumeq2dv | |- ( ph -> sum_ d e. ( 1 ... ( |_ ` A ) ) sum_ n e. { x e. ( 1 ... ( |_ ` A ) ) | d || x } B = sum_ d e. ( 1 ... ( |_ ` A ) ) sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) C ) |
| 61 | 46 60 | eqtrd | |- ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ d e. { x e. NN | x || n } B = sum_ d e. ( 1 ... ( |_ ` A ) ) sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) C ) |