This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dmdprdpr.z | |- Z = ( Cntz ` G ) |
|
| dmdprdpr.0 | |- .0. = ( 0g ` G ) |
||
| dmdprdpr.s | |- ( ph -> S e. ( SubGrp ` G ) ) |
||
| dmdprdpr.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
||
| Assertion | dmdprdpr | |- ( ph -> ( G dom DProd { <. (/) , S >. , <. 1o , T >. } <-> ( S C_ ( Z ` T ) /\ ( S i^i T ) = { .0. } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmdprdpr.z | |- Z = ( Cntz ` G ) |
|
| 2 | dmdprdpr.0 | |- .0. = ( 0g ` G ) |
|
| 3 | dmdprdpr.s | |- ( ph -> S e. ( SubGrp ` G ) ) |
|
| 4 | dmdprdpr.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
|
| 5 | 0ex | |- (/) e. _V |
|
| 6 | dprdsn | |- ( ( (/) e. _V /\ S e. ( SubGrp ` G ) ) -> ( G dom DProd { <. (/) , S >. } /\ ( G DProd { <. (/) , S >. } ) = S ) ) |
|
| 7 | 5 3 6 | sylancr | |- ( ph -> ( G dom DProd { <. (/) , S >. } /\ ( G DProd { <. (/) , S >. } ) = S ) ) |
| 8 | 7 | simpld | |- ( ph -> G dom DProd { <. (/) , S >. } ) |
| 9 | xpscf | |- ( { <. (/) , S >. , <. 1o , T >. } : 2o --> ( SubGrp ` G ) <-> ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) ) ) |
|
| 10 | 3 4 9 | sylanbrc | |- ( ph -> { <. (/) , S >. , <. 1o , T >. } : 2o --> ( SubGrp ` G ) ) |
| 11 | 10 | ffnd | |- ( ph -> { <. (/) , S >. , <. 1o , T >. } Fn 2o ) |
| 12 | 5 | prid1 | |- (/) e. { (/) , 1o } |
| 13 | df2o3 | |- 2o = { (/) , 1o } |
|
| 14 | 12 13 | eleqtrri | |- (/) e. 2o |
| 15 | fnressn | |- ( ( { <. (/) , S >. , <. 1o , T >. } Fn 2o /\ (/) e. 2o ) -> ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) = { <. (/) , ( { <. (/) , S >. , <. 1o , T >. } ` (/) ) >. } ) |
|
| 16 | 11 14 15 | sylancl | |- ( ph -> ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) = { <. (/) , ( { <. (/) , S >. , <. 1o , T >. } ` (/) ) >. } ) |
| 17 | fvpr0o | |- ( S e. ( SubGrp ` G ) -> ( { <. (/) , S >. , <. 1o , T >. } ` (/) ) = S ) |
|
| 18 | 3 17 | syl | |- ( ph -> ( { <. (/) , S >. , <. 1o , T >. } ` (/) ) = S ) |
| 19 | 18 | opeq2d | |- ( ph -> <. (/) , ( { <. (/) , S >. , <. 1o , T >. } ` (/) ) >. = <. (/) , S >. ) |
| 20 | 19 | sneqd | |- ( ph -> { <. (/) , ( { <. (/) , S >. , <. 1o , T >. } ` (/) ) >. } = { <. (/) , S >. } ) |
| 21 | 16 20 | eqtrd | |- ( ph -> ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) = { <. (/) , S >. } ) |
| 22 | 8 21 | breqtrrd | |- ( ph -> G dom DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) |
| 23 | 1on | |- 1o e. On |
|
| 24 | dprdsn | |- ( ( 1o e. On /\ T e. ( SubGrp ` G ) ) -> ( G dom DProd { <. 1o , T >. } /\ ( G DProd { <. 1o , T >. } ) = T ) ) |
|
| 25 | 23 4 24 | sylancr | |- ( ph -> ( G dom DProd { <. 1o , T >. } /\ ( G DProd { <. 1o , T >. } ) = T ) ) |
| 26 | 25 | simpld | |- ( ph -> G dom DProd { <. 1o , T >. } ) |
| 27 | 1oex | |- 1o e. _V |
|
| 28 | 27 | prid2 | |- 1o e. { (/) , 1o } |
| 29 | 28 13 | eleqtrri | |- 1o e. 2o |
| 30 | fnressn | |- ( ( { <. (/) , S >. , <. 1o , T >. } Fn 2o /\ 1o e. 2o ) -> ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) = { <. 1o , ( { <. (/) , S >. , <. 1o , T >. } ` 1o ) >. } ) |
|
| 31 | 11 29 30 | sylancl | |- ( ph -> ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) = { <. 1o , ( { <. (/) , S >. , <. 1o , T >. } ` 1o ) >. } ) |
| 32 | fvpr1o | |- ( T e. ( SubGrp ` G ) -> ( { <. (/) , S >. , <. 1o , T >. } ` 1o ) = T ) |
|
| 33 | 4 32 | syl | |- ( ph -> ( { <. (/) , S >. , <. 1o , T >. } ` 1o ) = T ) |
| 34 | 33 | opeq2d | |- ( ph -> <. 1o , ( { <. (/) , S >. , <. 1o , T >. } ` 1o ) >. = <. 1o , T >. ) |
| 35 | 34 | sneqd | |- ( ph -> { <. 1o , ( { <. (/) , S >. , <. 1o , T >. } ` 1o ) >. } = { <. 1o , T >. } ) |
| 36 | 31 35 | eqtrd | |- ( ph -> ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) = { <. 1o , T >. } ) |
| 37 | 26 36 | breqtrrd | |- ( ph -> G dom DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) |
| 38 | 1n0 | |- 1o =/= (/) |
|
| 39 | 38 | necomi | |- (/) =/= 1o |
| 40 | disjsn2 | |- ( (/) =/= 1o -> ( { (/) } i^i { 1o } ) = (/) ) |
|
| 41 | 39 40 | mp1i | |- ( ph -> ( { (/) } i^i { 1o } ) = (/) ) |
| 42 | df-pr | |- { (/) , 1o } = ( { (/) } u. { 1o } ) |
|
| 43 | 13 42 | eqtri | |- 2o = ( { (/) } u. { 1o } ) |
| 44 | 43 | a1i | |- ( ph -> 2o = ( { (/) } u. { 1o } ) ) |
| 45 | 10 41 44 1 2 | dmdprdsplit | |- ( ph -> ( G dom DProd { <. (/) , S >. , <. 1o , T >. } <-> ( ( G dom DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) /\ G dom DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) /\ ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) C_ ( Z ` ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) ) /\ ( ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) i^i ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) ) = { .0. } ) ) ) |
| 46 | 3anass | |- ( ( ( G dom DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) /\ G dom DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) /\ ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) C_ ( Z ` ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) ) /\ ( ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) i^i ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) ) = { .0. } ) <-> ( ( G dom DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) /\ G dom DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) /\ ( ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) C_ ( Z ` ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) ) /\ ( ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) i^i ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) ) = { .0. } ) ) ) |
|
| 47 | 45 46 | bitrdi | |- ( ph -> ( G dom DProd { <. (/) , S >. , <. 1o , T >. } <-> ( ( G dom DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) /\ G dom DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) /\ ( ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) C_ ( Z ` ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) ) /\ ( ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) i^i ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) ) = { .0. } ) ) ) ) |
| 48 | 47 | baibd | |- ( ( ph /\ ( G dom DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) /\ G dom DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) ) -> ( G dom DProd { <. (/) , S >. , <. 1o , T >. } <-> ( ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) C_ ( Z ` ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) ) /\ ( ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) i^i ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) ) = { .0. } ) ) ) |
| 49 | 48 | ex | |- ( ph -> ( ( G dom DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) /\ G dom DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) -> ( G dom DProd { <. (/) , S >. , <. 1o , T >. } <-> ( ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) C_ ( Z ` ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) ) /\ ( ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) i^i ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) ) = { .0. } ) ) ) ) |
| 50 | 22 37 49 | mp2and | |- ( ph -> ( G dom DProd { <. (/) , S >. , <. 1o , T >. } <-> ( ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) C_ ( Z ` ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) ) /\ ( ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) i^i ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) ) = { .0. } ) ) ) |
| 51 | 21 | oveq2d | |- ( ph -> ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) = ( G DProd { <. (/) , S >. } ) ) |
| 52 | 7 | simprd | |- ( ph -> ( G DProd { <. (/) , S >. } ) = S ) |
| 53 | 51 52 | eqtrd | |- ( ph -> ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) = S ) |
| 54 | 36 | oveq2d | |- ( ph -> ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) = ( G DProd { <. 1o , T >. } ) ) |
| 55 | 25 | simprd | |- ( ph -> ( G DProd { <. 1o , T >. } ) = T ) |
| 56 | 54 55 | eqtrd | |- ( ph -> ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) = T ) |
| 57 | 56 | fveq2d | |- ( ph -> ( Z ` ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) ) = ( Z ` T ) ) |
| 58 | 53 57 | sseq12d | |- ( ph -> ( ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) C_ ( Z ` ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) ) <-> S C_ ( Z ` T ) ) ) |
| 59 | 53 56 | ineq12d | |- ( ph -> ( ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) i^i ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) ) = ( S i^i T ) ) |
| 60 | 59 | eqeq1d | |- ( ph -> ( ( ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) i^i ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) ) = { .0. } <-> ( S i^i T ) = { .0. } ) ) |
| 61 | 58 60 | anbi12d | |- ( ph -> ( ( ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) C_ ( Z ` ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) ) /\ ( ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) i^i ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) ) = { .0. } ) <-> ( S C_ ( Z ` T ) /\ ( S i^i T ) = { .0. } ) ) ) |
| 62 | 50 61 | bitrd | |- ( ph -> ( G dom DProd { <. (/) , S >. , <. 1o , T >. } <-> ( S C_ ( Z ` T ) /\ ( S i^i T ) = { .0. } ) ) ) |