This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of definition of the internal direct product, which states that S is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eldprdi.0 | |- .0. = ( 0g ` G ) |
|
| eldprdi.w | |- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
||
| eldprdi.1 | |- ( ph -> G dom DProd S ) |
||
| eldprdi.2 | |- ( ph -> dom S = I ) |
||
| eldprdi.3 | |- ( ph -> F e. W ) |
||
| Assertion | eldprdi | |- ( ph -> ( G gsum F ) e. ( G DProd S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldprdi.0 | |- .0. = ( 0g ` G ) |
|
| 2 | eldprdi.w | |- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
|
| 3 | eldprdi.1 | |- ( ph -> G dom DProd S ) |
|
| 4 | eldprdi.2 | |- ( ph -> dom S = I ) |
|
| 5 | eldprdi.3 | |- ( ph -> F e. W ) |
|
| 6 | eqid | |- ( G gsum F ) = ( G gsum F ) |
|
| 7 | oveq2 | |- ( f = F -> ( G gsum f ) = ( G gsum F ) ) |
|
| 8 | 7 | rspceeqv | |- ( ( F e. W /\ ( G gsum F ) = ( G gsum F ) ) -> E. f e. W ( G gsum F ) = ( G gsum f ) ) |
| 9 | 5 6 8 | sylancl | |- ( ph -> E. f e. W ( G gsum F ) = ( G gsum f ) ) |
| 10 | 1 2 | eldprd | |- ( dom S = I -> ( ( G gsum F ) e. ( G DProd S ) <-> ( G dom DProd S /\ E. f e. W ( G gsum F ) = ( G gsum f ) ) ) ) |
| 11 | 4 10 | syl | |- ( ph -> ( ( G gsum F ) e. ( G DProd S ) <-> ( G dom DProd S /\ E. f e. W ( G gsum F ) = ( G gsum f ) ) ) ) |
| 12 | 3 9 11 | mpbir2and | |- ( ph -> ( G gsum F ) e. ( G DProd S ) ) |