This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014) (Revised by Mario Carneiro, 13-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubval.b | |- B = ( Base ` G ) |
|
| grpsubval.p | |- .+ = ( +g ` G ) |
||
| grpsubval.i | |- I = ( invg ` G ) |
||
| grpsubval.m | |- .- = ( -g ` G ) |
||
| Assertion | grpsubval | |- ( ( X e. B /\ Y e. B ) -> ( X .- Y ) = ( X .+ ( I ` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubval.b | |- B = ( Base ` G ) |
|
| 2 | grpsubval.p | |- .+ = ( +g ` G ) |
|
| 3 | grpsubval.i | |- I = ( invg ` G ) |
|
| 4 | grpsubval.m | |- .- = ( -g ` G ) |
|
| 5 | oveq1 | |- ( x = X -> ( x .+ ( I ` y ) ) = ( X .+ ( I ` y ) ) ) |
|
| 6 | fveq2 | |- ( y = Y -> ( I ` y ) = ( I ` Y ) ) |
|
| 7 | 6 | oveq2d | |- ( y = Y -> ( X .+ ( I ` y ) ) = ( X .+ ( I ` Y ) ) ) |
| 8 | 1 2 3 4 | grpsubfval | |- .- = ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) |
| 9 | ovex | |- ( X .+ ( I ` Y ) ) e. _V |
|
| 10 | 5 7 8 9 | ovmpo | |- ( ( X e. B /\ Y e. B ) -> ( X .- Y ) = ( X .+ ( I ` Y ) ) ) |