This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the imaginary part of the logarithm function. (Contributed by Mario Carneiro, 23-Sep-2014) (Revised by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logimcl | |- ( ( A e. CC /\ A =/= 0 ) -> ( -u _pi < ( Im ` ( log ` A ) ) /\ ( Im ` ( log ` A ) ) <_ _pi ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logrncl | |- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. ran log ) |
|
| 2 | ellogrn | |- ( ( log ` A ) e. ran log <-> ( ( log ` A ) e. CC /\ -u _pi < ( Im ` ( log ` A ) ) /\ ( Im ` ( log ` A ) ) <_ _pi ) ) |
|
| 3 | 1 2 | sylib | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( log ` A ) e. CC /\ -u _pi < ( Im ` ( log ` A ) ) /\ ( Im ` ( log ` A ) ) <_ _pi ) ) |
| 4 | 3simpc | |- ( ( ( log ` A ) e. CC /\ -u _pi < ( Im ` ( log ` A ) ) /\ ( Im ` ( log ` A ) ) <_ _pi ) -> ( -u _pi < ( Im ` ( log ` A ) ) /\ ( Im ` ( log ` A ) ) <_ _pi ) ) |
|
| 5 | 3 4 | syl | |- ( ( A e. CC /\ A =/= 0 ) -> ( -u _pi < ( Im ` ( log ` A ) ) /\ ( Im ` ( log ` A ) ) <_ _pi ) ) |