This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cosine of a number between -upi / 2 and pi / 2 is nonnegative. (Contributed by Mario Carneiro, 13-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosq14ge0 | |- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> 0 <_ ( cos ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfpire | |- ( _pi / 2 ) e. RR |
|
| 2 | neghalfpire | |- -u ( _pi / 2 ) e. RR |
|
| 3 | 2 1 | elicc2i | |- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) <-> ( A e. RR /\ -u ( _pi / 2 ) <_ A /\ A <_ ( _pi / 2 ) ) ) |
| 4 | 3 | simp1bi | |- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> A e. RR ) |
| 5 | resubcl | |- ( ( ( _pi / 2 ) e. RR /\ A e. RR ) -> ( ( _pi / 2 ) - A ) e. RR ) |
|
| 6 | 1 4 5 | sylancr | |- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( _pi / 2 ) - A ) e. RR ) |
| 7 | 3 | simp3bi | |- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> A <_ ( _pi / 2 ) ) |
| 8 | subge0 | |- ( ( ( _pi / 2 ) e. RR /\ A e. RR ) -> ( 0 <_ ( ( _pi / 2 ) - A ) <-> A <_ ( _pi / 2 ) ) ) |
|
| 9 | 1 4 8 | sylancr | |- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( 0 <_ ( ( _pi / 2 ) - A ) <-> A <_ ( _pi / 2 ) ) ) |
| 10 | 7 9 | mpbird | |- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> 0 <_ ( ( _pi / 2 ) - A ) ) |
| 11 | picn | |- _pi e. CC |
|
| 12 | halfcl | |- ( _pi e. CC -> ( _pi / 2 ) e. CC ) |
|
| 13 | 11 12 | ax-mp | |- ( _pi / 2 ) e. CC |
| 14 | 13 | negcli | |- -u ( _pi / 2 ) e. CC |
| 15 | 11 13 | negsubi | |- ( _pi + -u ( _pi / 2 ) ) = ( _pi - ( _pi / 2 ) ) |
| 16 | pidiv2halves | |- ( ( _pi / 2 ) + ( _pi / 2 ) ) = _pi |
|
| 17 | 11 13 13 16 | subaddrii | |- ( _pi - ( _pi / 2 ) ) = ( _pi / 2 ) |
| 18 | 15 17 | eqtri | |- ( _pi + -u ( _pi / 2 ) ) = ( _pi / 2 ) |
| 19 | 13 11 14 18 | subaddrii | |- ( ( _pi / 2 ) - _pi ) = -u ( _pi / 2 ) |
| 20 | 3 | simp2bi | |- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> -u ( _pi / 2 ) <_ A ) |
| 21 | 19 20 | eqbrtrid | |- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( _pi / 2 ) - _pi ) <_ A ) |
| 22 | pire | |- _pi e. RR |
|
| 23 | suble | |- ( ( ( _pi / 2 ) e. RR /\ A e. RR /\ _pi e. RR ) -> ( ( ( _pi / 2 ) - A ) <_ _pi <-> ( ( _pi / 2 ) - _pi ) <_ A ) ) |
|
| 24 | 1 22 23 | mp3an13 | |- ( A e. RR -> ( ( ( _pi / 2 ) - A ) <_ _pi <-> ( ( _pi / 2 ) - _pi ) <_ A ) ) |
| 25 | 4 24 | syl | |- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( ( _pi / 2 ) - A ) <_ _pi <-> ( ( _pi / 2 ) - _pi ) <_ A ) ) |
| 26 | 21 25 | mpbird | |- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( _pi / 2 ) - A ) <_ _pi ) |
| 27 | 0re | |- 0 e. RR |
|
| 28 | 27 22 | elicc2i | |- ( ( ( _pi / 2 ) - A ) e. ( 0 [,] _pi ) <-> ( ( ( _pi / 2 ) - A ) e. RR /\ 0 <_ ( ( _pi / 2 ) - A ) /\ ( ( _pi / 2 ) - A ) <_ _pi ) ) |
| 29 | 6 10 26 28 | syl3anbrc | |- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( _pi / 2 ) - A ) e. ( 0 [,] _pi ) ) |
| 30 | sinq12ge0 | |- ( ( ( _pi / 2 ) - A ) e. ( 0 [,] _pi ) -> 0 <_ ( sin ` ( ( _pi / 2 ) - A ) ) ) |
|
| 31 | 29 30 | syl | |- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> 0 <_ ( sin ` ( ( _pi / 2 ) - A ) ) ) |
| 32 | 4 | recnd | |- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> A e. CC ) |
| 33 | sinhalfpim | |- ( A e. CC -> ( sin ` ( ( _pi / 2 ) - A ) ) = ( cos ` A ) ) |
|
| 34 | 32 33 | syl | |- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( sin ` ( ( _pi / 2 ) - A ) ) = ( cos ` A ) ) |
| 35 | 31 34 | breqtrd | |- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> 0 <_ ( cos ` A ) ) |